Introduction The DSM matrix

The DSM data matrix

DSM data are given as a term-term or term-context matrix:

| get see use hear eat kil

knife | 51 20 84 0 3 0
cat | 52 58 4 4 6 26
dog | 115 83 10 42 33 17
boat | 59 39 23 4 0 0
cup | 98 14 6 2 1 0
pig | 12 17 3 2 9 27

@ Most DSM parameters irrelevant for mathematical analysis
(context type, terms vs. contexts, feature scaling, .. .)

@ Our example: targets (rows) are nouns, features (columns) are
co-occurrences with verbs (V-Obj), raw counts from BNC
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Introduction The DSM matrix

The DSM data matrix

DSM data are given as a term-term or term-context matrix:

(561 20 84 0 3 0]
52 58 4 4 6 26
115 83 10 42 33 17
59 39 23 4 0 O
98 14 6 2 1 O
12 17 3 2 9 27]

@ Mathematical notation: matrix M of real numbers

@ Each row is a feature vector for one of the target terms, e.g.
Vet = [52 58 4 4 6 26

e n-dimensional vector space R" 5 v = (vi,...,v,)
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Eguite i
Why vector spaces?

@ Vector spaces encode basic geometric intuitions

= geometric interpretation of numerical feature lists
= one reason why linear algebra is such a useful tool
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Why vector spaces?

@ Vector spaces encode basic geometric intuitions

= geometric interpretation of numerical feature lists
= one reason why linear algebra is such a useful tool

@ Interpretation of vectors x,y,... € R"” as points in
n-dimensional Euclidean (= intuitive) space

» n =2 -» Euclidean plane
» n =3 > three-dimensional Euclidean space
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Why vector spaces?

@ Vector spaces encode basic geometric intuitions

= geometric interpretation of numerical feature lists
= one reason why linear algebra is such a useful tool

@ Interpretation of vectors x,y,... € R"” as points in
n-dimensional Euclidean (= intuitive) space
» n =2 -» Euclidean plane
» n = 3 = three-dimensional Euclidean space

@ Exploit geometric intuition for analysis of DSM data
as group of points or arrows in Euclidean space
» distance, length, direction, angle, dimension, ...
» intuitive in R? and R3
» can be generalised to higher dimensions
1= | may refer to feature vectors for target terms as “data points”
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Introduction Geometric interpretation

The geometric interpretation of vectors

Vectors as points

@ Vectors like u = (4,2)

X
ZA
and v = (3,5) can be A VoG5
understood as the
coordinates of points in S Q
the Euclidean plane 1 |
@ In this interpretation, N i
vectors identify specific } u=4,72
locations in the plane 2 —Q
14 o
—t—t———>
1 2 3 4 5 6 X1
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The geometric interpretation of vectors

Vectors as arrows & vector addition

@ Vectors can also be

X
. 2
interpreted as A
wyr " 6 + v=(305)
displacement arrows
between points RS W
. v-u = (-1, 3)
@ Arrow from u to v is de- +4

scribed by vector (—1,3)

o Calculated as pointwise u=@42
difference between N
components of v and u: 11
v—u= (v —ui,vo—u) - -
1 2 5 6 Xl

o General operation:
vector addition
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Introduction Geometric interpretation

The geometric interpretation of vectors

Vectors as arrows

@ Vectors as arrows are
position-independent

o y—x=v—uif the
relative positions of x
and y are the same as
those of u and v

@ Regardless of their
location in the plane

Evert & Lenci (ESSLLI 2009)

X2A
64 /O y-X = v-u
y =(4,6.5) =(-1,3)
s+ Q
b
41 [}
31 *
>4 o x = (6, 3.5)
1__
—t >
1 2 3 4 5 6 X1
28 July 2009 8/71
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The geometric interpretation of vectors

Direction & scalar multiplication

@ Intuitively, arrows have a

X
L 2
length and direction A
6 -

@ Arrows point in the same o

direction iff they are T

multiples of each other: 44 u

scalar multiplication .1 2u

Au = (Aug, Aup) with

constant factor A € R 2T >\
e For A <0, arrows have 1T “ o

opposite directions R — ,x
o —u=(-1)-uis the 2 3 4 5 6 71

inverse arrow of u
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The geometric interpretation of vectors

Linking points and arrows

@ Points in the plane can
be identified by displace-
ment arrows from fixed
reference point

@ A natural reference point
is the origin 0 = (0, 0)

@ These arrows are given
by the same vectors as
the point coordinates

X2A
(3,5)

origin
(0,0)
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Introduction Geometric interpretation

Geometric interpretation of DSM data matrix

Reduce DSM matrix to two dimensions for visualisation:

get use

knife | 51 84
cat | 52 4
dog | 115 10
boat | 59 23
cup | 98 6
pig | 12 3
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Geometric interpretation of DSM data matrix

Reduce DSM matrix to two dimensions for visualisation:

Two dimensions of English V-Obj DSM

get use &1
knife
knife | 51 84 8
cat | 52 4 3 .
dog | 115 10 N
boat | 59 23 S
cup 98 6 boat
. IS d
pig | 12 3 wat og
e T T T T T T
0 20 40 60 80 100 120
get
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Vector spaces Formal definition

The n-dimensional Euclidean space

@ The mathematical basis for matrix algebra is the theory of
vector spaces, also known as linear algebra

@ Before we focue on the analsis of DSM matrices, we will look
at some fundamental definitions and results of linear algebra
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Vector spaces Formal definition

The n-dimensional Euclidean space

@ The mathematical basis for matrix algebra is the theory of
vector spaces, also known as linear algebra

@ Before we focue on the analsis of DSM matrices, we will look
at some fundamental definitions and results of linear algebra

@ Definition: the n-dimensional real Euclidean vector space

R" is the set of all real-valued vectors x = (x1, ..., x,) of
length n, with the following operations:

» vector addition: u+v := (v + va,..., Uy + Vy)

» scalar multiplication: \u:= (Auy, ..., \u,) for A € R
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Vector spaces Formal definition

The n-dimensional Euclidean space

@ Important properties of the addition and s-multiplication
operations in R”
(ut+v)+w=u+(v+w)
u+0=0+u=u
Yu3(—u): u+(-u)=(-u)+u=0
ut+v=v+u
A+ p)u=Xdu+ pu
(A)u = A(pu)
l-u=u
8. AMu+v)=2Au+ v
for any u,v,w € R" and \,p € R

Noas~wh =
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Vector spaces Formal definition

The axioms of a general vector space

@ Abstract vector space over the real numbers R
= set V of vectors u € V with operations
» utveVforuve V (addition)
» Au € V for A € R, u € V (scalar multiplication)
@ Addition and s-multiplication must satisfy the axioms
L (u+v)+w=u+(v+w)
ut+0=0+u=u
Yuduw: ut+u =u+u=0
ut+v=v-+u
(A4 p)u=Au+ pu
(Ap)u = A(pu)
l-u=u
8. AMu+v)=2Au+ v
foranyu,v,w € Vand \,u € R

NooA~wN

@ 0 is the unique neutral element of V,
and the unique inverse u’ of u is often written as —u
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Vector spaces Formal definition

Further properties of vector spaces

@ Further properties of vector spaces:

» 0-u=0

» A0=0
»du=0=XA=0vu=0

» (=Nu=A(—u)=—(Au) = —Au
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Vector spaces Formal definition

Further properties of vector spaces

@ Further properties of vector spaces:

» 0-u=0

» A0=0
»du=0=XA=0vu=0

» (=Nu=A(—u)=—(Au) = —Au

@ It is easy to show these properties for R”, but they also follow
directly from the general axioms for all vector spaces
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Vector spaces Formal definition

Further properties of vector spaces

@ Further properties of vector spaces:

>

vV vy

O-u=0

A0=0
Au=0=A=0vu=0

(=MNu = A(—u) = —(Au) = —=)Au

@ It is easy to show these properties for R”, but they also follow
directly from the general axioms for all vector spaces

@ A non-trivial example: vector space C|a, b] of continuous real
functions f : x — f(x) over the interval [a, b]

>

vector addition: Vf, g € C|a, b],

we define f + g by (f + g)(x) := f(x) + g(x)
s-multiplication: VA € R and Vf € C|[a, b],

we define Af by (Af)(x) := X f(x)

v One can show that C|a, b] satisfies the vector space axioms

Evert & Lenci (ESSLLI 2009) 28 July 2009

15 /71



2o Galffice otz
Linear combinations & dimensionality

e Linear combination of vectors u®), ... u(":
Au® 4+ 2u® ) (™)

for any coefficients A1,..., A, € R

» intuition: all vectors that can be constructed from
u® . u™ using the basic vector operations
s , g p

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 28 July 2009

16 / 71



Vector spaces Basis & linear subspace

Linear combinations & dimensionality

e Linear combination of vectors u®), ... u(":

Au® 4+ 2u® ) (™)

for any coefficients A1,..., A, € R

» intuition: all vectors that can be constructed from
u® ... ul" using the basic vector operations

o u® ... ul™ are linearly independent iff
Au® 4+ ou®@ 4o\ =0

implies \f =X p=---=X,=0
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Vector spaces Basis & linear subspace

Linear combinations & dimensionality

e Linear combination of vectors u™), ... u(™:

Au® 4+ 2u® ) (™)

for any coefficients A1,..., A, € R

» intuition: all vectors that can be constructed from
u® ... ul" using the basic vector operations

o u® ... ul™ are linearly independent iff
Au® 4+ ou®@ 4o\ =0
implies \f =X p=---=X,=0

@ Otherwise, they are linearly dependent

» equivalent: one u() is a linear combination of the other vectors
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Linear combinations & dimensionality

@ Largest n € N for which there is a set of n linearly independent
vectors ul) € V is called the dimension of V: dimV = n
@ It can be shown that dimR"” = n
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Vector spaces Basis & linear subspace

Linear combinations & dimensionality

@ Largest n € N for which there is a set of n linearly independent
vectors ul) € V is called the dimension of V: dimV = n

@ It can be shown that dimR"” = n

@ If there is no maximal number of linearly independent vectors,
the vector space is infinite-dimensional (dim V = c0)

@ An example is dimC[a, b] = oo (easy to show)
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Vector spaces Basis & linear subspace

Linear combinations & dimensionality

@ Largest n € N for which there is a set of n linearly independent
vectors ul) € V is called the dimension of V: dim V = n

@ It can be shown that dimR"” = n

@ If there is no maximal number of linearly independent vectors,
the vector space is infinite-dimensional (dim V = c0)

@ An example is dimC[a, b] = oo (easy to show)
@ Every finite-dimensional vector space V' is isomorphic to the

Euclidean space R” (with n = dim V)
= We will be able to prove this in a little while
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Bsis & Teey sulipees
Basis & coordinates

o A set of vectors b)), ... b(" € V is called a basis of V
iff every u € V' can be written as a linear combination

with unique coefficients x, ..., xp

@ Number of vectors in a basis = dim V
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Bsis & Teey sulipees
Basis & coordinates

o A set of vectors b)), ... b(" € V is called a basis of V
iff every u € V' can be written as a linear combination

with unique coefficients x, ..., xp

@ Number of vectors in a basis = dim V
e For every n-dimensional vector space V, a set of n vectors

b, ..., b(" € V is a basis iff they are linearly independent
1= Can you think of a proof?
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2o Galffice otz
Basis & coordinates

@ The unique coefficients x1, ..., x, are called the coordinates
of u wrt. the basis B := (b(l), .. .,b(")):
X1
X2

u= ] =:x

Xn

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 28 July 2009 19 /71



Bsis & Teey sulipees
Basis & coordinates

@ The unique coefficients xg,..., x, are called the coordinates
of u wrt. the basis B := (b(l), .. .,b(”)):
X1
X2

u= | =x

Xn

@ x € R" is the coordinate vector of u € V wrt. B
1=V is isomorphic to R" by virtue of this correspondence

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 28 July 2009 19 /71



Bsis & Teey sulipees
Basis & coordinates

@ The unique coefficients xg,..., x, are called the coordinates
of u wrt. the basis B := (b(l), .. .,b(”)):

X1
X2

Xn

@ x € R" is the coordinate vector of u € V wrt. B
1=V is isomorphic to R" by virtue of this correspondence

@ We can think of the rows (or columns) of a DSM matrix M as

coordinates in an abstract vector space
» coordinate transformations play an important role for DSMs

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 28 July 2009 19 /71



Bsis & Teey sulipees
Basis & coordinates

@ The components (uy, uy, ..., u,) of a number vector u € R”
correspond to its natural coordinates

u=(up,u,...,up) =g
Un
according to the standard basis e(!), ... e(" of R":

e =(1,0,...,0)
e® =(0,1,...,0)

el =(0,0,...,1)
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Vector spaces Basis & linear subspace

Basis & coordinates

o u=(4,5) cR?

@ Basis B of R?:
b = (2,1)
b(® = (—1,1)

gt

ou

Evert & Lenci (ESSLLI 2009)
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Bsis & Teey sulipees
Basis & coordinates

u=(4,5) € R?
Basis B of R?:
bt = (2,1) u
b(® = (—1,1)
3
‘)
Standard basis:
eV = (1,0) \
e =(0,1)

N

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 28 July 2009 21/ 71
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2o Galffice otz
Linear subspaces

@ The set of all linear combinations of vectors
bW, ... bk € V is called the span

sp (b(l), L b(k)) - {Alb(l) bt b e R}
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Vector spaces Basis & linear subspace

Linear subspaces

@ The set of all linear combinations of vectors
bW, ... b e V is called the span

sp <b(1), L b(k)) - {Alb(l) bt b e R}

o sp (b(M), ... b(k) forms a linear subspace of V

> a linear subspace is a subset of V that is closed under vector
addition and scalar multiplication
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Bsis & Teey sulipees
Linear subspaces

@ The set of all linear combinations of vectors
bW, ... b e V is called the span

sp (b(l), L b(k)) - {Alb(l) bt b e R}

o sp (b(M), ... b(k) forms a linear subspace of V

> a linear subspace is a subset of V that is closed under vector
addition and scalar multiplication

o b®) ... bk form a basis of sp (b(l), ceey b(k))
iff they are linearly independent

1= Can you prove that every linear subspace of R" has a basis?
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Bsis & Teey sulipees
Linear subspaces

@ The set of all linear combinations of vectors
bW, ... b e V is called the span

sp (b(l), o b(k)) = {Alb(l) bt b e R}

o sp (b(M), ... b(k) forms a linear subspace of V

> a linear subspace is a subset of V' that is closed under vector
addition and scalar multiplication

e bW ... bk form a basis of sp (b(l), ce b(k))
iff they are linearly independent
1= Can you prove that every linear subspace of R" has a basis?

@ The rank of vectors b(1), ... b(k) is the dimension of their
span, corresponding to the largest number of linearly
independent vectors among them
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Bsis & Teey sulipees
Linear combinations & linear subspace

e Example: linear subspace U C R3 spanned by vectors
b = (6,0,2), b®® = (0,3,3) and b(®) = (3,1,2)
» dim U = 2 (why?)
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Bsis & Teey sulipees
Linear combinations & linear subspace

e Example: linear subspace U C R3 spanned by vectors
b = (6,0,2), b®® = (0,3,3) and b(®) = (3,1,2)
» dim U = 2 (because b(®) = 3b(®) — 3p(1))
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\EEHEEIEEEM  in a nutshell

Matrix as list of vectors

@ Vector u € R" = list of real numbers (coordinates)
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LIOLHE ]
Matrix as list of vectors

@ Vector u € R" = list of real numbers (coordinates)

@ List of k vectors = rectangular array of real numbers,
called a n x k matrix (or k X n row matrix)
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Matrix algebra in a nutshell

Matrix as list of vectors
@ Vector u € R" = list of real numbers (coordinates)

@ List of k vectors = rectangular array of real numbers,
called a n x k matrix (or k X n row matrix)

o Example: vectors u,v € R3
3 2
u= |0, v=]2
2 1

form the columns of a matrix A:

. . 3 2 dil  di2
A= |u v| =10 2| = dp1 aso
Do 2 1 a3l an
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LIOLHE ]
Matrix = list of vectors

@ rank (A) = rank of the list of column vectors
@ Column matrices are a convention in linear algebra

@ But DSM matrix often has row vectors for the target terms
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0 & auisticll
Matrix = list of vectors

@ rank (A) = rank of the list of column vectors
@ Column matrices are a convention in linear algebra

@ But DSM matrix often has row vectors for the target terms

@ Row rank and column rank of a matrix A are always the same
(this is not trivial!)
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0 & auisticll
Matrices and linear equation systems

@ Matrices are a versatile instrument and a convenient way to
express linear operations on sets of numbers

o E.g. coefficient matrix of a linear system of equations:
aj1xy + apxe + - -+ + aipxp = by

ap1x1 + axxo + -+ + agnxp = b

ay1xy + aaXxa + -+ -+ aknXn = by
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0 & auisticll
Matrices and linear equation systems

@ Matrices are a versatile instrument and a convenient way to
express linear operations on sets of numbers

o E.g. coefficient matrix of a linear system of equations:

aiixi + apxe + -+ aipxp = by
a1X1 + axpXxo + -+ - 4 axpXp = bo

ay1xy + aaXxa + -+ -+ aknXn = by

X1
an ain by
X2
4 A = y X = y b =
a a b
k1 kn Xn k
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in a nutshell
Matrix algebra
@ Concise notation of linear equation system by appropriate
definition of matrix-vector multiplication

a11x1 + awxp + -+ ainxp = by

as1Xy + axnxa + -+ + apxp = bo

Ak1X1 + akaXo + -+ + apnxn = by
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0 & auisticll
Matrix algebra

@ Concise notation of linear equation system by appropriate
definition of matrix-vector multiplication

a11x1 + awxp + -+ ainxp = by

as1Xy + axnxa + -+ + apxp = bo

Ak1X1 + akaXo + -+ + apnxn = by

air - ain by
X2
- =
a - a ' b
k1 kn X, k
w A.x=Db
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0 & auisticll
Matrix algebra

@ The set of all real-valued k x n matrices forms a
(k - n)-dimensional vector space over R:
» A + B is defined by element-wise addition
» MAA is defined by element-wise s-multiplication
> these operations satisfy all vector space axioms
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0 & auisticll
Matrix algebra

@ The set of all real-valued k x n matrices forms a
(k - n)-dimensional vector space over R:
» A + B is defined by element-wise addition
» MAA is defined by element-wise s-multiplication
> these operations satisfy all vector space axioms

o Additional operation: matrix multiplication
» two equation systems: z=B-yandy=C-x
> by inserting the expressions for y into the first system,
we can express z directly in terms of x
(and use this e.g. to solve the equations for x)
> the result is a linear equation system z = A - x
1= define matrix multiplication such that A=B-C
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LIOLHE ]
Matrix multiplication

C1j
ajj bip - bin :
Cnj
A = B : C
(k x m) (k x n) (nx m)

@ B and C must be conformable
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LIOLHE ]
Matrix multiplication

C1j
ajj bip - bin :
Cnj
A = B : C
(k x m) (k x n) (nx m)

@ B and C must be conformable

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 28 July 2009

20 / 71



LIOLHE ]
Matrix multiplication

cij
ajj = |bi bin .
Cnj
A = B . C
(k x m) (k x n) (nx m)

@ B and C must be conformable
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0 & auisticll
Matrix multiplication

cij
ajj = |b1 -+ bi .
Cnj
A = B . C
(k x m) (k x n) (nx m)

@ B and C must be conformable
= A - x corresponds to matrix multiplication of A with a

single-column matrix (containing the vector x)
» convention: vector = column matrix
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0 & auisticll
Matrix multiplication

o Algebra = vector space + multiplication operation
with the following properties:

A(BC) = (AB)C =: ABC

A(B + B') = AB + AB’

(A+A')B =AB+A'B

(AA)B = A(AB) = A\(AB) =: AAB

A-0=0, 0-B=0

A-l=A, I.B=B

where A, B and C are conformable matrices

v

vV vy vy VvYyy

@ 0 is a zero matrix of arbitrary dimensions

@ | is a square identity matrix of arbitrary dimensions:

1
|l .=
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LIOLHE ]
Transposition

@ The transpose AT of a matrix A swaps rows and columns:

T

zl [l:: |:al an 33:|
5 —
2 bs by by b3
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0 & auisticll
Transposition

@ The transpose AT of a matrix A swaps rows and columns:

a b’
1 1

dy d2 as
a b = [ }
2 bs by by b3

@ Properties of the transpose:

(A+B)T =AT +BT

(AA)T = A\(AT) =: AAT

(A-B)T =BT -AT  [note the different order of A and B!]

rank (A7) = rank (A)
1" =1

v

vy vy vYyy
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0 & auisticll
Transposition

@ The transpose AT of a matrix A swaps rows and columns:

T

zl 1;; |:al an 33:|
5 —
2 bs b1 by bz

@ Properties of the transpose:

(A+B)T =AT +BT

(AA)T = A\(AT) =: AAT

(A-B)T =BT -AT  [note the different order of A and B!]
rank (A7) = rank (A)

1" =1

v

vy vy vYyy

o A is called symmetric iff AT = A

» symmetric matrices have many special properties that will
become important later (e.g. eigenvalues)
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LIOLHE ]
Vectors and matrices

@ A coordinate vector x € R" can be identified with a n x 1
matrix (i.e. a single-column matrix):

X1

Xn
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0 & auisticll
Vectors and matrices

@ A coordinate vector x € R" can be identified with a n x 1
matrix (i.e. a single-column matrix):

X1

Xn

@ Multiplication of a matrix A containing the vectors

a®, ... alk) with a vector of coefficients A1, ..., Ak
yields a linear combination of a® ... a(k):
A1
A | =\a® 4. 4 \alk)
Ak
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rthlR
R as a toy DSM laboratory

@ Matrix algebra is a powerful and convenient tool in numerical
mathematics = implement DSM with matrix operations

@ Specialised (and highly optimised) libraries are available for
various programming languages (C, C++, Perl, Python, ...)

@ Some numerical programming environments are even based
entirely on matrix algebra (Matlab, Octave, NumPy/Sage)

@ Statistical software packages like R also support matrices
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rthlR
R as a toy DSM laboratory

@ Matrix algebra is a powerful and convenient tool in numerical
mathematics = implement DSM with matrix operations

@ Specialised (and highly optimised) libraries are available for
various programming languages (C, C++, Perl, Python, ...)

@ Some numerical programming environments are even based
entirely on matrix algebra (Matlab, Octave, NumPy/Sage)

@ Statistical software packages like R also support matrices

@ R as a DSM laboratory for toy models
http://www.r-project.org/

o Integrates efficient matrix operations with
statistical analysis, clustering, machine
learning, visualisation, ...
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Matrix algebra Wi N34

Matrix algebra with R

Vectors in R:
e ul <- c(3, 0, 2)
e u2 <- c(0, 2, 2)
e v <- 1:6
@ print(v)
[11 123456

Defining matrices:
@ A <- matrix(v, nrow=3)
@ print(A)

[,11 [,2]
[1,] 1 4
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rthlR
Matrix algebra in R

Matrix of column vectors:
@ B <- cbind(ul, u2)
@ print(B)

ul u2
[1,] 3 ©
[2,] 0 2
[3,1] 2 2

Matrix of row vectors:
@ C <- rbind(ul, u2)
@ print(C)

[,11 [,2]1 [,3]
ul 3 0 2
2 0 2 2
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rthlR
Matrix algebra in R

Matrix multiplication:
e A Yx% C
(,11 [,2]1 [,3]
[1,] 3 8 10
[2,] 6 10 14
[3,] 9 12 18

@ NB: * does not perform matrix multiplication

Also for multiplication of matrix with vector:
@ C %*) c(1,1,0)

[,1]
ul 3
u2 2

v result of multiplication is a column vector (i.e. plain vectors
are interpreted as column vectors in matrix operations)
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Matrix algebra Wi N34

Matrix algebra in R

Transpose of matrix:
o t(A)
[,11 [,21 [,3]

[1,] 1 2 3
[2,] 4 5 6

Transposition of vectors:
e t(ul) (row vector)

[,11 [,2] [,3]
[1,] 3 0 2

e t(t(ul)) (explicit column vector)
[,1]
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rthlR
Matrix algebra in R

Rank of a matrix:
@ gr(A)$rank
2
@ la.rank <- function (A) qr(A)$rank
@ la.rank(A)

Column rank = row rank:
@ la.rank(A) == la.rank(t(A))

[1] TRUE

AT . A is symmetric (can you prove this?):
o t(A) Uxh A
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amg) (hieey e
Linear maps

@ A linear map is a homomorphism between two vector spaces
V and W, i.e. a function f : V — W that is compatible with
addition and s-multiplication:

Q f(u+v)="~F(u)+f(v)
Q f(Au)=X-f(u)
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amg) (hieey e
Linear maps

@ A linear map is a homomorphism between two vector spaces
V and W, i.e. a function f : V — W that is compatible with
addition and s-multiplication:

Q f(u+v)="~F(u)+f(v)
Q f(Au)=X-f(u)

@ Obviously, f is uniquely determined by the images

f(bM), ..., f(b(™) of any basis b3, ... b(" of V
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Matrix algebra and linear maps

Linear maps

@ A linear map is a homomorphism between two vector spaces
V and W, i.e. a function f : V — W that is compatible with
addition and s-multiplication:

Q f(u+v)="~F(u)+f(v)
Q f(Au)=X-f(u)

@ Obviously, f is uniquely determined by the images
f(bM),...,f(b(M) of any basis b, ... b(M of V

o Using natural coordinates, a linear map f : R" — RK can
therefore be described by the vectors

all dln
f(e(1)) =r 2?1 . f(e(n)) = a?"
akl akn
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LS
Matrix representation of a linear map

@ For a vector u = xle(l) + -+ x,,e(") € R", we have

v = f(l.l) = f(xle(l) 4+t Xne(”))
= X1 f(e(l)) _|_+Xn f(e(n))

and hence the natural coordinate vector y of v is given by

yi=x1-ap+x2-ap+-+Xn-ajn
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amg) (hieey e
Matrix representation of a linear map

@ For a vector u = xle(l) + -+ x,,e(") € R", we have

v = f(l.l) = f(xle(l) 4+t Xne(”))
= X1 f(e(l)) _|_+Xn f(e(n))

and hence the natural coordinate vector y of v is given by
yi=x1-ap+x2-ap+-+Xn-ajn
@ This corresponds to matrix multiplication

1 a1 - din X1

Yk aklr ** @kn Xn

- v="Ff(u) < y=A-x
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LS
Image & kernel

e The image of a linear map f : R” — R is the subspace of all
values v € R¥ that f(u) can assume for u € R

im (£) :=sp (F(e™),.... f(el))
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amg) (hieey e
Image & kernel

@ The image of a linear map f : R” — R is the subspace of all
values v € R¥ that f(u) can assume for u € R

im (£) :=sp (F(e™),.... f(el))

@ The rank of f is defined by rank (f) := dim(Im (f))
@ rank (f) = rank (A) for the matrix representation A
o f is surjective (onto) iff Im (f) = R¥, i.e. rank (f) = k
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amg) (hieey e
Image & kernel

The image of a linear map f : R” — R¥ is the subspace of all
values v € R¥ that f(u) can assume for u € R

im (£) :=sp (F(e™),.... f(el))

The rank of f is defined by rank () := dim(Im (f))
rank (f) = rank (A) for the matrix representation A
f is surjective (onto) iff Im () = R¥, i.e. rank (f) = k

@ The kernel of f is the subspace of all x € R” that are mapped
to 0 € RX;
Ker(f) :={xeR"|f(x) =0}
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LS
Rank & composition

e We have dim(Im (f)) + dim(Ker (f)) = n

e f is injective iff every v € Im(f) has a unique preimage
v = f(u), i.e. iff Ker (f) = {0} or rank (f) =n
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23 lfiezr e
Rank & composition
e We have dim(Im (f)) + dim(Ker (f)) = n
e f is injective iff every v € Im(f) has a unique preimage

v = f(u), i.e. iff Ker (f) = {0} or rank (f) =n

@ The composition of linear maps corresponds
to matrix multiplication:
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amg) (hieey e
Rank & composition

e We have dim(Im (f)) + dim(Ker (f)) = n
e f is injective iff every v € Im(f) has a unique preimage
v = f(u), i.e. iff Ker (f) = {0} or rank (f) =n

@ The composition of linear maps corresponds
to matrix multiplication:
» f:R" — R¥ given by a k x n matrix A
» g :RK — R™ given by a m x k matrix B
» recall that (g o f)(u) := g(f(u))
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amg) (hieey e
Rank & composition

e We have dim(Im (f)) + dim(Ker (f)) = n
e f is injective iff every v € Im(f) has a unique preimage
v = f(u), i.e. iff Ker (f) = {0} or rank (f) =n

@ The composition of linear maps corresponds
to matrix multiplication:
» f:R" — R¥ given by a k x n matrix A
» g :RK — R™ given by a m x k matrix B
» recall that (g o f)(u) := g(f(u))
w the composition go f : R" — R™ is given
by the matrix product B - A
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LS
The inverse matrix

@ A linear map f : R” — R" is called an endomorphism
> can be represented by a square matrix A
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LS
The inverse matrix

@ A linear map f : R” — R" is called an endomorphism
> can be represented by a square matrix A

o f surjective <= rank(f) =n <= f injective

e rank (f) = rank (f(e(l)), oy f(e(n))) =10
<= rank(A) =n <= detA#0
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amg) (hieey e
The inverse matrix

@ A linear map f : R” — R" is called an endomorphism
> can be represented by a square matrix A

o f surjective <= rank(f) =n <= f injective
o rank (f) = rank (f(e®),....f(eM)) =n

<= rank(A) =n <= detA#0
= f bijective (one-to-one) <= detA #0
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amg) (hieey e
The inverse matrix

@ A linear map f : R” — R" is called an endomorphism
> can be represented by a square matrix A

o f surjective <= rank(f) =n <= f injective
o rank (f) = rank (f(e®),....f(eM)) =n

<= rank(A) =n <= detA#0
= f bijective (one-to-one) <= detA #0

e If f is bijective, there exists an inverse function
f~1:RR" — R", which is also a linear map and satisfies
f~1(f(u)) =uand f(f1(v))=v

o f~1is given by the inverse matrix A~1 of A,
which must satisfy A”1 - A=A- A"l =1
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Sl UL S
Linear equation systems

@ Recall that a linear system of equations can be written in
compact matrix notation:

aiixiy + apxa + -+ ainxp = by

ao1x1 + axpxa + -+ + anxp = b

a1X1 + akoxo + - -+ + aknXn = by
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Sl UL S
Linear equation systems

@ Recall that a linear system of equations can be written in
compact matrix notation:

X1
ai1 ... din b1
X2
a ... a ' b
k1 kn Xn k
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Sl UL S
Linear equation systems

@ Recall that a linear system of equations can be written in
compact matrix notation:

A-x=b
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Linear equation systems

@ Recall that a linear system of equations can be written in
compact matrix notation:

A-x=b

@ Obviously, A describes a linear map f : R” — RX, and the
linear system of equations can be written f(x) = b
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Linear equation systems

@ Recall that a linear system of equations can be written in
compact matrix notation:

A-x=b

@ Obviously, A describes a linear map f : R” — R, and the
linear system of equations can be written f(x

)=
@ This linear system can be solved iff b € Im(f), i.e. iff bis a
linear combination of the column vectors of A
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Linear equation systems

@ Recall that a linear system of equations can be written in
compact matrix notation:

A-x=b

@ Obviously, A describes a linear map f : R” — R, and the
linear system of equations can be written f(x) =
).

@ This linear system can be solved iff b € Im(f), i.e. iff bis a
linear combination of the column vectors of A
@ The solution is given by the coefficients xi, ..., xp

of this linear combination
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Sl UL S
Linear equation systems

@ The linear system has a solution for arbitrary b € R¥
iff f is surjective, i.e. iff rank (A) = k
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Linear equation systems

@ The linear system has a solution for arbitrary b € R¥
iff f is surjective, i.e. iff rank (A) = k

@ Solutions of the linear system are unique iff f is injective, i.e.
iff rank (A) = n (the column vectors are linearly independent)
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Matrix algebra Solving equation systems

Linear equation systems

@ The linear system has a solution for arbitrary b € R¥
iff f is surjective, i.e. iff rank (A) = k
@ Solutions of the linear system are unique iff f is injective, i.e.
iff rank (A) = n (the column vectors are linearly independent)
o If k =n (i.e. Ais a square matrix), the linear map f is an

endomorphism. Consequently, the linear system has a unique
solution for arbitrary b iff det A # 0
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Linear equation systems

@ The linear system has a solution for arbitrary b € R¥
iff f is surjective, i.e. iff rank (A) = k

@ Solutions of the linear system are unique iff f is injective, i.e.
iff rank (A) = n (the column vectors are linearly independent)

e If k =n (i.e. Ais a square matrix), the linear map f is an
endomorphism. Consequently, the linear system has a unique
solution for arbitrary b iff det A # 0

@ In this case, the solution can be computed with the inverse
function f~1 or the inverse matrix A~1:

x=f'b)=A"1b

1= practically, A7! is often determined by solving the corresponding
linear system of equations
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Sl UL S
Linear equation systems

Solving equation systems in R:
@ A <- rbind(c(1,3), c(2,-1))
@b <- c(5,3)
@ la.rank(A) (test that A is invertible)
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Matrix algebra Solving equation systems

Linear equation systems

Solving equation systems in R:

@ A <- rbind(c(1,3), c(2,-1))
b <- c¢(5,3)
la.rank(A) (test that A is invertible)
A.inv <- solve(A) (inverse matrix A1)
print(round(A.inv, digits=3))

(11  [,2]
[1,] 0.143 0.429
[2,] 0.286 -0.143
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Matrix algebra Solving equation systems

Linear equation systems

Solving equation systems in R:
@ A <- rbind(c(1,3), c(2,-1))

@ b <- ¢(5,3)
@ la.rank(A) (test that A is invertible)
@ A.inv <- solve(A) (inverse matrix A1)
@ print(round(A.inv, digits=3))
[,11  [,2]
[1,] 0.143 0.429
[2,] 0.286 -0.143
@ A.inv %x% b
[,1]
[1,] 2
[2,] 1
@ solve(A, b) (recommended: calculate A=1 - b directly)
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Matrix algebra

Coordinate transformations

Coordinate transformation

@ We want to transform between coordinates with respect to
a basis b, ... b(" and standard coordinates in R”

X2

A

[0}
|
|
|
T
|
1
-+
1
1
|
T

u=(4,5)

|
41 A7 -
- l N
-7 1 AN
N 347 + A
R -7 | -
N P 7
1 24 A
\ @ -
AN e I
- -
l
- : ——+>
b® e(1)1\ 2 4 5 6 1
b

Evert & Lenci (ESSLLI 2009)

DSM: Matrix Algebra

28 July 2009

48 /71



Matrix algebra Coordinate transformation

Coordinate transformations

@ The basis can be represented by a matrix B whose columns
are the standard coordinates of b(1), ... b("

@ Given a vector u € R” with standard coordinates u =g x and
B-coordinates u =g y, we have

u= ylb(l) 4+ ... _|_ynb(”)
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Matrix algebra Coordinate transformation

Coordinate transformations

@ The basis can be represented by a matrix B whose columns
are the standard coordinates of b(), ... b("

@ Given a vector u € R” with standard coordinates u =g x and
B-coordinates u =g y, we have

u= ylb(l) 4+ ... _|_ynb(”)

@ In standard coordinates, this equation corresponds to matrix
multiplication:
x=B-y

w Matrix B transforms B-coordinates into standard coordinates
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VEWHEEZELER  Coordinate transformation

Coordinate transformations

@ To transform from standard coordinates into B-coordinates,
i.e. from x to y, we must solve the linear system x = By
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Matrix algebra Coordinate transformation

Coordinate transformations

@ To transform from standard coordinates into B-coordinates,
i.e. from x to y, we must solve the linear system x = By

e Since the b() are linearly independent, B is regular and the
inverse B~ exists, so that

y =B x

w The inverse matrix B~1 transforms from standard coordinates
into B-coordinates
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Matrix algebra Coordinate transformation

Coordinate transformations

@ To transform from standard coordinates into B-coordinates,
i.e. from x to y, we must solve the linear system x = By

e Since the b() are linearly independent, B is regular and the
inverse B~ exists, so that

y =B x

w The inverse matrix B~ transforms from standard coordinates
into B-coordinates

@ Recall that BB~! = B~!B = I (transform back & forth)

@ Transformation from B-coordinates (u =g y) into arbitrary
C-coordinates (u =¢ z):

z=C By
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Matrix algebra Coordinate transformation

Coordinate transformations: an example

)(2A
6 u=i4,5)
5—-*—|———+———|—1Q
Pie N
41 7 - v
e | N
e 1 AN -7
. s L
\\ /,/ | //’
\‘ii/ >4 /4.{/
N -1
\\ e(z) /// |
g L
|
| | | | |
2 | | | | |>x
b® e(1)1\2 3 4 5 6 M1
b
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VEWHEEZELER  Coordinate transformation

Coordinate transformations: an example

e Basis b(!) = (2,1), b(® = (—1,1) with matrix representation

1 1

_2 -1 -1 _ 3 3
B_|:1 1:|7 B _[_l Z]
3 3
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Matrix algebra Coordinate transformation

Coordinate transformations: an example

e Basis b(!) = (2,1), b(® = (—1,1) with matrix representation
1

2 -1 1 3
o[t ] e[ ]

3 3

@ Vector u = (4,5) with standard and B-coordinates

-

[N
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Matrix algebra Coordinate transformation

Coordinate transformations: an example

e Basis b(!) = (2,1), b(® = (—1,1) with matrix representation

S

1 1
@ Vector u = (4,5) with standard and B-coordinates

-

@ Check that these equalities hold:
4 2 -] 3] [ 3 4
5/ |1 12| |2 _% 5
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Matrix algebra Coordinate transformation

Coordinate transformations: an example

e Basis b(!) = (2,1), b(® = (—1,1) with matrix representation

S

1 1
@ Vector u = (4,5) with standard and B-coordinates

-

@ Check that these equalities hold:
4 12 —1] |3 3
5/ (1 12| |2

@ Now perform the calculations in R!

WIN Wi

1
3

|4
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DSM laboratory

Playtime: toy DSM laboratory

@ Goal: construct and analyse DSM entirely in R
@ We will build the small noun-verb matrix from the introduction

@ Data: verb-object co-occurrence tokens from British National
Corpus (extracted with regexp query, both words lemmatised)

@ Text table with 3,406,821
co-occurence tokens in file
bnc_vobj_filtered.txt.gz

acquire
affect
fight
face
serve
put

Evert & Lenci (ESSLLI 2009)

deficiency

body
infection
condition
interest
back

DSM: Matrix Algebra

Introduction

28 July 2009
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bnc_vobj_filtered.txt.gz

Preliminaries

# This is a comment: do not type comment lines into R!

# You should be able to execute most commands by copy & paste
> (1:10)°2

[1] 1 4 9 16 25 36 49 64 81 100

# The > indicates the R command prompt; it is not part of the input!
# Output of an R command is shown in blue below the command

# Long commands may require continuation lines starting with +;
# you should enter such commands on a single line, if possible

> c(1,

+ 2,

+ 3)

[11 1 2 3
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Reading the co-occurrence tokens

# Load tabular data with read.table (); options save memory and ensure
# that strings are loaded correctly; gzfile() decompresses on the fly

> tokens <- read.table(gzfile("bnc_vobj_filtered.txt.gz"),
+ colClasses="character", quote="",

+ col.names=c("verb", "noun"))

# You must first ‘‘change working directory’’ to where you have saved the file;
# if you can’t, then replace filename by file.choose() above

# If you have problems with the compressed file, then decompress the disk file
# (some Web browsers may do this automatically) and load with

> tokens <- read.table("bnc_vobj_filtered.txt",

+ colClasses="character", quote="",

+ col.names=c("verb", "noun"))
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Reading the co-occurrence tokens

# The variable tokens now holds co-occurrence tokens as a table
# (in R lingo, such tables are called data.frames)

# Size of the table (rows, columns) and first 6 rows
> dim(tokens)
[1] 3406821 2

> head(tokens, 6)

verb noun
1 acquire deficiency
2 affect body
3 fight dinfection
4 face condition
5 serve interest
6 put back
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Filtering selected verbs & nouns

# Example matrix for selected nouns and verbs
> selected.nouns <- c("knife","cat","dog","boat","cup","pig")
> selected.verbs <- c("get","see","use","hear","eat","kill")

# %in% operator tests whether value is contained in list;

# note the single & for logical *'and"’ (vector operation)

> tokens <- subset(tokens, verb %in) selected.verbs &
+ noun %in}% selected.nouns)

# How many co-occurrence tokens are left?
> dim(tokens)
[1] 924 2
> head(tokens, 5)
verb mnoun
2813  get knife
6021 see pig
6489 see cat
24130 see cat

26620 see Dboat
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CO-OCCUFFGHCG counts

# Contstruct matrix of co-occurrence counts (contingency table)
> M <- table(tokens$noun, tokens$verb)
> M
eat get hear kill see use

boat 0 59 4 0 39 23

cat 6 52 4 26 58 4

cup 1 98 2 0 14 6

dog 33 115 42 17 83 10

knife 3 51 0 0 20 84

pig 9 12 2 27 17 3

# Use subscripts to extract row and column vectors
> M["cat " s ]
eat get hear kill see wuse
6 52 4 26 58 4
> M[, "use"]
boat cat cup dog knife pig
23 4 6 10 84 3
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Marginal frequencies

# For the calculating association scores, we need the marginal frequencies
# of the nouns and verbs; for simplicity, we obtain them by summing over the
# rows and columns of the table (this is not mathematically correct!)

> f.nouns <- rowSums (M)

> f.verbs <- colSums(M)

> N <- sum(M) # sample size (sum over all cells of the table)

> f.nouns

boat cat cup dog knife pig
126 150 121 300 158 70

> f.verbs

eat get hear kill see wuse
52 387 54 70 231 130

>N

[1] 924
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Expected and observed frequencies

(noun)  (verb)
e

Expected frequencies: Ejj = N

can be calculated efficiently with outer product f(") . ()T

X1 _|Xiy1 Xiy2 X1y3
[Xz] [yl y2 y3] xX2y1 X2y2 X2y3
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DSM laboratory Frequency counts

Expected and observed frequencies

(noun)  (verb)
e

Expected frequencies: Ejj = N

can be calculated efficiently with outer product f(") . ()T

X1 _|Xiy1 Xiy2 X1y3
[Xz] [yl y2 y3] xX2y1 X2y2 X2y3

> E <- f.nouns %x*% t(f.verbs) / N
> round(E, 1)

eat get hear kill see wuse
[1,] 7.0 52.4 7.3 9.5 31.2 17.6
[2,] 8.4 62.8 8.8 11.4 37.5 21.1
[3,] 6.8 50.7 7.1 9.2 30.2 17.0

# Observed frequencies are simply the entries of M
>0<-M
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DEIRELITEISAN  Feature scaling

Feature scaling: log frequencies

# Because of Zipf's law, frequency distributions are highly skewed;

# DSM matrix M will be dominated by high-frequency entries

# Solution 1: transform into logarithmic frequencies

> M1 <- loglO(M + 1)
> round (M1, 2)

eat g
boat 0.00 1
cat 0.85 1
cup 0.30 2
dog 1.53 2
knife 0.60 1
pig 1.00 1

Evert & Lenci (ESSLLI 2009)

et

.78
.72
.00
.06
.72
.11

hear

O O = O O O

.70
.70
.48
.63
.00
.48

# discounted (+1) to avoid 1og(0)

kill
0.00
1.43
0.00
1.26
0.00
1.45

DSM: Matrix Algebra

N S

see
.60
77
.18
.92
.32
.26

O r =, OO K~

use
.38
.70
.85
.04
.93
.60
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Feature scaling: association measures

Simple association measures can be expressed in terms of observed

(O) and expected (E) frequencies, e.g. t-score:

You can implement any of the equations in (Evert 2008)

> M2 <- (0 - E) / sqrt(0 + 1)

> round (M2, 2)

eat
boat -7.03
cat -0.92
cup -4.11
dog 2.76
knife -2.95
pig 1.60

Evert & Lenci (ESSLLI 2009)

get
.86
.49
.76
.99
.10
.80

O—-E
t_

VO

hear kill
-1.48 -9.47
-2.13 2.82
-2.93 -9.17
3.73 -1.35
-9.23 -11.97
-1.21 4.10

see
1.23
2.67
-4.20
0.87
-4.26
-0.12

DSM: Matrix Algebra

use
.11
.65
.17
.71
.70
.42

# discounted to avoid division by 0
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Feature scaling: sparse association measures

# "‘Sparse’’ association measures set all negative associations to 0;

# this can be done with ifelse(), a vectorised if statement
> M3 <- ifelse(0 >= E, (0 - E) / sqrt(0), 0)

> round (M3, 2)

eat get hear

boat 0.00 0.87 O
cat 0.00 0.00 O
cup 0.00 4.78 0
dog 2.81 0.00 3
knife 0.00 0.00 O
pig 1.69 0.00 O

# Pick your favourite
> M <- M2

Evert & Lenci (ESSLLI 2009)

.00
.00
.00
.78
.00
.00

scaling method here!

kill
.00
.87
.00
.00
.00
.18

> O O O N O

DSM: Matrix Algebra

O O O O N -

see
.24
.69
.00
.88
.00
.00

O OO O O O -

use
.13
.00
.00
.00
.74
.00
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Visualisation: plot two selected dimensions

> M.2d <- M[, c("get", "use")]
> round(M.2d, 2)
get use
boat 0.86 1.11
cat -1.49 -7.65
cup 4.76 -4.17
dog -0.99 -9.71
knife -2.10 6.70
pig -4.80 -3.42

# Two-column matrix automatically interpreted as x- and y-coordinates
> plot(M.2d, pch=20, col="red", main="DSM visualisation")

# Add labels: the text strings are the rownames of M
> text(M.2d, labels=rownames(M.2d), pos=3)
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Feztane SEEs
Visualisation: plot two selected dimensions

DSM visualisation

o
-

use
0
|

-10
|
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pig

knife

cat
.

dog

boat

cup

-4

-2

get
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Moz rergibenrs
Norm & distance

Intuitive length of vector x: Euclidean norm

x = [xll2 = /(a)? + ()2 + -+ (xn)?
Euclidean distance metric: d> (x,y) = |[|[x — y|2

1 more about norms and distances on Thursday

# R function definitions look almost like mathematical definitions
euclid.norm <- function (x) sqrt(sum(x * x))

euclid.dist <- function (x, y) euclid.norm(x - y)
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Moz rergibenrs
Normalisation to unit length

# Compute lengths (norms) of all row vectors

> row.norms <- apply(M, 1, euclid.norm) # 1= rows, 2 = columns
> round(row.norms, 2)

boat cat cup dog knife pig

12.03 9.01 12.93 10.93 17.45 7.46

# Normalisation: divide each row by its norm; this a rescaling of the row
# “dimensions’’ and can be done by multiplication with a diagonal matrix
> scaling.matrix <- diag(l / row.norms)

> round(scaling.matrix, 3)

> M.norm <- scaling.matrix %*% M
> round(M.norm, 2)
eat get hear kill see use
[1,] -0.58 0.07 -0.12 -0.79 0.10 0.09
[2,] -0.10 -0.17 -0.24 0.31 0.30 -0.85
[3,]1 -0.32 0.37 -0.23 -0.71 -0.32 -0.32
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Moz rergibenrs
Distances between row vectors

# Matrix multiplication has lost the row labels (copy from M)
> rownames (M.norm) <- rownames (M)

# To calculate distances of all terms e.g. from "dog”, apply euclid.dist()
# function to rows, supplying the "dog" vector as fixed second argument
> v.dog <- M.norm["dog",]

> dist.dog <- apply(M.norm, 1, euclid.dist, y=v.dog)

# Now we can sort the vector of distances to find nearest neighbours
> sort(dist.dog)

dog cat pig cup boat knife
0.000000 0.839380 1.099067 1.298376 1.531342 1.725269
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Moz rergibenrs
The distance matrix

# R has a built-in function to compute a full distance matrix
> distances <- dist(M.norm, method="euclidean")
> round(distances, 2)
boat cat cup dog knife
cat 1.56
cup 0.73 1.43
dog 1.53 0.84 1.30
knife 0.77 1.70 0.93 1.73
pig 1.80 0.80 1.74 1.10 1.69

# If you want to search nearest neighbours, convert triangular distance
# matrix to full symmetric matrix and extract distance vectors from rows
> dist.matrix <- as.matrix(distances)
> sort(dist.matrix["dog",])

dog cat pig cup boat knife
0.000000 0.839380 1.099067 1.298376 1.531342 1.725269
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Moz rergibenrs
Clustering and semantic maps

# Distance matrix is also the basis for a cluster analysis
> plot(hclust(distances))

# Visualisation as semantic map by projection into 2-dimensional space;
# uses non-linear multidimensional scaling (MDS)

> library(MASS)

> M.mds <- isoMDS(distances)$points

initial value 2.611213

final value 0.000000

converged

# Plot works in the same way as for the two selected dimensions above
> plot(M.mds, pch=20, col="red", main="Semantic map",

+ xlab="Dim 1", ylab="Dim 2")

> text(M.mds, labels=rownames(M.mds), pos=3)
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Clustering and semantic maps

Cluster Dendrogram Semantic map
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