
Introduction The DSM matrix

The DSM data matrix

DSM data are given as a term-term or term-context matrix:

get see use hear eat kill

knife 51 20 84 0 3 0
cat 52 58 4 4 6 26
dog 115 83 10 42 33 17

boat 59 39 23 4 0 0
cup 98 14 6 2 1 0
pig 12 17 3 2 9 27

Most DSM parameters irrelevant for mathematical analysis
(context type, terms vs. contexts, feature scaling, . . . )

Our example: targets (rows) are nouns, features (columns) are
co-occurrences with verbs (V-Obj), raw counts from BNC
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Introduction The DSM matrix

The DSM data matrix

DSM data are given as a term-term or term-context matrix:

M =



51 20 84 0 3 0
52 58 4 4 6 26

115 83 10 42 33 17
59 39 23 4 0 0
98 14 6 2 1 0
12 17 3 2 9 27


Mathematical notation: matrix M of real numbers

Each row is a feature vector for one of the target terms, e.g.

vcat =
[
52 58 4 4 6 26

]
n-dimensional vector space Rn 3 v = (v1, . . . , vn)
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Introduction Geometric interpretation

Why vector spaces?

Vector spaces encode basic geometric intuitions

+ geometric interpretation of numerical feature lists
+ one reason why linear algebra is such a useful tool

Interpretation of vectors x, y, . . . ∈ Rn as points in
n-dimensional Euclidean (= intuitive) space

I n = 2 Ü Euclidean plane
I n = 3 Ü three-dimensional Euclidean space

Exploit geometric intuition for analysis of DSM data
as group of points or arrows in Euclidean space

I distance, length, direction, angle, dimension, . . .
I intuitive in R2 and R3

I can be generalised to higher dimensions
+ I may refer to feature vectors for target terms as “data points”
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Introduction Geometric interpretation

The geometric interpretation of vectors
Vectors as points

Vectors like u = (4, 2)
and v = (3, 5) can be
understood as the
coordinates of points in
the Euclidean plane

In this interpretation,
vectors identify specific
locations in the plane

x1

u = (4, 2)

x2

1 2 3 4 5

1

2

3

4

5

6

6 v = (3, 5)
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Introduction Geometric interpretation

The geometric interpretation of vectors
Vectors as arrows & vector addition

Vectors can also be
interpreted as
“displacement arrows”
between points

Arrow from u to v is de-
scribed by vector (−1, 3)

Calculated as pointwise
difference between
components of v and u:
v−u = (v1−u1, v2−u2)

General operation:
vector addition

x1

u = (4, 2)

x2

1 2 3 4 5

1

2

3

4

5

6

6 v = (3, 5)

v-u = (-1, 3)
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Introduction Geometric interpretation

The geometric interpretation of vectors
Vectors as arrows

Vectors as arrows are
position-independent

y − x = v − u if the
relative positions of x
and y are the same as
those of u and v

Regardless of their
location in the plane

x1

x = (6, 3.5)

x2

1 2 3 4 5

1

2

3

4

5

6

6 y = (4, 6.5)
y-x = v-u
= (-1, 3)
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Introduction Geometric interpretation

The geometric interpretation of vectors
Direction & scalar multiplication

Intuitively, arrows have a
length and direction

Arrows point in the same
direction iff they are
multiples of each other:
scalar multiplication
λu = (λu1, λu2) with
constant factor λ ∈ R
For λ < 0, arrows have
opposite directions

−u = (−1) · u is the
inverse arrow of u

x1

x2

1 2 3 4 5

1

2

3

4

5

6

6

u
2u

-u
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Introduction Geometric interpretation

The geometric interpretation of vectors
Linking points and arrows

Points in the plane can
be identified by displace-
ment arrows from fixed
reference point

A natural reference point
is the origin 0 = (0, 0)

These arrows are given
by the same vectors as
the point coordinates

x1

origin
(0,0)

(4, 2)

x2

1 2 3 4 5

1

2

3

4

5

6

6 (3, 5)

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 28 July 2009 10 / 71



Introduction Geometric interpretation

Geometric interpretation of DSM data matrix

Reduce DSM matrix to two dimensions for visualisation:

get use

knife 51 84
cat 52 4
dog 115 10

boat 59 23
cup 98 6
pig 12 3
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Two dimensions of English V−Obj DSM
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cat
dog

knife

boat
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Vector spaces Formal definition

The n-dimensional Euclidean space

The mathematical basis for matrix algebra is the theory of
vector spaces, also known as linear algebra

Before we focue on the analsis of DSM matrices, we will look
at some fundamental definitions and results of linear algebra

Definition: the n-dimensional real Euclidean vector space
Rn is the set of all real-valued vectors x = (x1, . . . , xn) of
length n, with the following operations:

I vector addition: u + v := (u1 + v1, . . . , un + vn)
I scalar multiplication: λu := (λu1, . . . , λun) for λ ∈ R
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Vector spaces Formal definition

The n-dimensional Euclidean space

Important properties of the addition and s-multiplication
operations in Rn

1. (u + v) + w = u + (v + w)
2. u + 0 = 0 + u = u
3. ∀u ∃(−u) : u + (−u) = (−u) + u = 0
4. u + v = v + u
5. (λ+ µ)u = λu + µu
6. (λµ)u = λ(µu)
7. 1 · u = u
8. λ(u + v) = λu + λv

for any u, v,w ∈ Rn and λ, µ ∈ R
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Vector spaces Formal definition

The axioms of a general vector space

Abstract vector space over the real numbers R
= set V of vectors u ∈ V with operations

I u + v ∈ V for u, v ∈ V (addition)
I λu ∈ V for λ ∈ R, u ∈ V (scalar multiplication)

Addition and s-multiplication must satisfy the axioms
1. (u + v) + w = u + (v + w)
2. u + 0 = 0 + u = u
3. ∀u ∃u′ : u + u′ = u′ + u = 0
4. u + v = v + u
5. (λ+ µ)u = λu + µu
6. (λµ)u = λ(µu)
7. 1 · u = u
8. λ(u + v) = λu + λv

for any u, v,w ∈ V and λ, µ ∈ R
0 is the unique neutral element of V ,
and the unique inverse u′ of u is often written as −u
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Vector spaces Formal definition

Further properties of vector spaces

Further properties of vector spaces:
I 0 · u = 0
I λ0 = 0
I λu = 0⇒ λ = 0 ∨ u = 0
I (−λ)u = λ(−u) = −(λu) =: −λu

It is easy to show these properties for Rn, but they also follow
directly from the general axioms for all vector spaces

A non-trivial example: vector space C[a, b] of continuous real
functions f : x 7→ f (x) over the interval [a, b]

I vector addition: ∀f , g ∈ C[a, b],
we define f + g by (f + g)(x) := f (x) + g(x)

I s-multiplication: ∀λ ∈ R and ∀f ∈ C[a, b],
we define λf by (λf )(x) := λ · f (x)

+ One can show that C[a, b] satisfies the vector space axioms
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Vector spaces Basis & linear subspace

Linear combinations & dimensionality

Linear combination of vectors u(1), . . . ,u(n):

λ1u(1) + λ2u(2) + · · ·+ λnu(n)

for any coefficients λ1, . . . , λn ∈ R
I intuition: all vectors that can be constructed from

u(1), . . . ,u(n) using the basic vector operations

u(1), . . . ,u(n) are linearly independent iff

λ1u(1) + λ2u(2) + · · ·+ λnu(n) = 0

implies λ1 = λ2 = · · · = λn = 0

Otherwise, they are linearly dependent
I equivalent: one u(i) is a linear combination of the other vectors
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Vector spaces Basis & linear subspace

Linear combinations & dimensionality

Largest n ∈ N for which there is a set of n linearly independent
vectors u(i) ∈ V is called the dimension of V : dim V = n

It can be shown that dim Rn = n

If there is no maximal number of linearly independent vectors,
the vector space is infinite-dimensional (dim V =∞)

An example is dim C[a, b] =∞ (easy to show)

Every finite-dimensional vector space V is isomorphic to the
Euclidean space Rn (with n = dim V )

+ We will be able to prove this in a little while
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Vector spaces Basis & linear subspace

Basis & coordinates

A set of vectors b(1), . . . ,b(n) ∈ V is called a basis of V
iff every u ∈ V can be written as a linear combination

u = x1b(1) + x2b(2) + · · ·+ xnb(n)

with unique coefficients x1, . . . , xn

Number of vectors in a basis = dim V

For every n-dimensional vector space V , a set of n vectors
b(1), . . . ,b(n) ∈ V is a basis iff they are linearly independent

+ Can you think of a proof?
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Vector spaces Basis & linear subspace

Basis & coordinates

The unique coefficients x1, . . . , xn are called the coordinates
of u wrt. the basis B :=

(
b(1), . . . ,b(n)

)
:

u ≡B


x1

x2
...
xn

 =: x

x ∈ Rn is the coordinate vector of u ∈ V wrt. B

+ V is isomorphic to Rn by virtue of this correspondence

We can think of the rows (or columns) of a DSM matrix M as
coordinates in an abstract vector space

I coordinate transformations play an important role for DSMs
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Vector spaces Basis & linear subspace

Basis & coordinates

The unique coefficients x1, . . . , xn are called the coordinates
of u wrt. the basis B :=

(
b(1), . . . ,b(n)

)
:

u ≡B


x1

x2
...
xn

 =: x

x ∈ Rn is the coordinate vector of u ∈ V wrt. B

+ V is isomorphic to Rn by virtue of this correspondence

We can think of the rows (or columns) of a DSM matrix M as
coordinates in an abstract vector space

I coordinate transformations play an important role for DSMs

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 28 July 2009 19 / 71



Vector spaces Basis & linear subspace

Basis & coordinates

The unique coefficients x1, . . . , xn are called the coordinates
of u wrt. the basis B :=

(
b(1), . . . ,b(n)

)
:

u ≡B


x1

x2
...
xn

 =: x

x ∈ Rn is the coordinate vector of u ∈ V wrt. B

+ V is isomorphic to Rn by virtue of this correspondence

We can think of the rows (or columns) of a DSM matrix M as
coordinates in an abstract vector space

I coordinate transformations play an important role for DSMs

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 28 July 2009 19 / 71



Vector spaces Basis & linear subspace

Basis & coordinates

The components (u1, u2, . . . , un) of a number vector u ∈ Rn

correspond to its natural coordinates

u = (u1, u2, . . . , un) ≡E


u1

u2
...

un


according to the standard basis e(1), . . . , e(n) of Rn:

e(1) = (1, 0, . . . , 0)

e(2) = (0, 1, . . . , 0)

...

e(n) = (0, 0, . . . , 1)

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 28 July 2009 20 / 71



Vector spaces Basis & linear subspace

Basis & coordinates

u = (4, 5) ∈ R2

Basis B of R2:

b(1) = (2, 1)

b(2) = (−1, 1)

u ≡B

[
3
2

]

Standard basis:

e(1) = (1, 0)

e(2) = (0, 1)

u ≡E

[
4
5

]

x1

x2

1 2 3 4 5

1

2

3

4

5

6

6 u=(4,5)

b(2)

b(1)
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Vector spaces Basis & linear subspace

Linear subspaces

The set of all linear combinations of vectors
b(1), . . . ,b(k) ∈ V is called the span

sp
(

b(1), . . . ,b(k)
)

:=
{
λ1b(1) + · · ·+ λkb(k) |λi ∈ R

}

sp
(
b(1), . . . ,b(k)

)
forms a linear subspace of V

I a linear subspace is a subset of V that is closed under vector
addition and scalar multiplication

b(1), . . . ,b(k) form a basis of sp
(
b(1), . . . ,b(k)

)
iff they are linearly independent

+ Can you prove that every linear subspace of Rn has a basis?

The rank of vectors b(1), . . . ,b(k) is the dimension of their
span, corresponding to the largest number of linearly
independent vectors among them
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Vector spaces Basis & linear subspace

Linear combinations & linear subspace

Example: linear subspace U ⊆ R3 spanned by vectors
b(1) = (6, 0, 2), b(2) = (0, 3, 3) and b(3) = (3, 1, 2)

I dim U = 2 (why?)

x1

x3

1 2 3 4 5

1

2

3

4

5

6

6

x2
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Example: linear subspace U ⊆ R3 spanned by vectors
b(1) = (6, 0, 2), b(2) = (0, 3, 3) and b(3) = (3, 1, 2)

I dim U = 2 (because b(2) = 3b(3) − 3
2 b(1))
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Matrix algebra in a nutshell

Matrix as list of vectors

Vector u ∈ Rn = list of real numbers (coordinates)

List of k vectors = rectangular array of real numbers,
called a n × k matrix (or k × n row matrix)

Example: vectors u, v ∈ R3

u ≡

3
0
2

 , v ≡

2
2
1


form the columns of a matrix A:

A =


...

...
u v
...

...

 =

3 2
0 2
2 1

 =

a11 a12

a21 a22

a31 a32


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Matrix algebra in a nutshell

Matrix = list of vectors

rank (A) = rank of the list of column vectors

Column matrices are a convention in linear algebra

But DSM matrix often has row vectors for the target terms

Row rank and column rank of a matrix A are always the same
(this is not trivial!)
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Matrix algebra in a nutshell

Matrices and linear equation systems

Matrices are a versatile instrument and a convenient way to
express linear operations on sets of numbers

E.g. coefficient matrix of a linear system of equations:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

ak1x1 + ak2x2 + · · ·+ aknxn = bk

å A =

a11 · · · a1n
...

...
ak1 · · · akn

 , x =


x1

x2
...
xn

 , b =

b1
...

bk


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Matrix algebra in a nutshell

Matrix algebra

Concise notation of linear equation system by appropriate
definition of matrix-vector multiplication

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

ak1x1 + ak2x2 + · · ·+ aknxn = bk

å

a11 · · · a1n
...

...
ak1 · · · akn

 ·


x1

x2
...
xn

 =

b1
...

bk



å A · x = b
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Matrix algebra in a nutshell

Matrix algebra

The set of all real-valued k × n matrices forms a
(k · n)-dimensional vector space over R:

I A + B is defined by element-wise addition
I λA is defined by element-wise s-multiplication
I these operations satisfy all vector space axioms

Additional operation: matrix multiplication
I two equation systems: z = B · y and y = C · x
I by inserting the expressions for y into the first system,

we can express z directly in terms of x
(and use this e.g. to solve the equations for x)

I the result is a linear equation system z = A · x
+ define matrix multiplication such that A = B · C
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Matrix algebra in a nutshell

Matrix multiplication

 aij
 =

bi1 · · · bin
 ·


c1j
...
...

cnj


A = B · C

(k ×m) (k × n) (n ×m)

B and C must be conformable
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bi1 · · · bin

 ·


c1j
...
...

cnj


A = B · C

(k ×m) (k × n) (n ×m)

B and C must be conformable

+ A · x corresponds to matrix multiplication of A with a
single-column matrix (containing the vector x)

I convention: vector = column matrix
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Matrix algebra in a nutshell

Matrix multiplication

Algebra = vector space + multiplication operation
with the following properties:

I A(BC) = (AB)C =: ABC
I A(B + B′) = AB + AB′

I (A + A′)B = AB + A′B
I (λA)B = A(λB) = λ(AB) =: λAB
I A · 0 = 0, 0 · B = 0
I A · I = A, I · B = B

where A, B and C are conformable matrices

0 is a zero matrix of arbitrary dimensions

I is a square identity matrix of arbitrary dimensions:

I :=

1
. . .

1


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Matrix algebra in a nutshell

Transposition

The transpose AT of a matrix A swaps rows and columns:a1 b1

a2 b2

a3 b3

T

=

[
a1 a2 a3

b1 b2 b3

]

Properties of the transpose:
I (A + B)T = AT + BT

I (λA)T = λ(AT ) =: λAT

I (A · B)T = BT · AT [note the different order of A and B!]
I rank

(
AT
)

= rank (A)
I IT = I

A is called symmetric iff AT = A
I symmetric matrices have many special properties that will

become important later (e.g. eigenvalues)
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Matrix algebra in a nutshell

Vectors and matrices

A coordinate vector x ∈ Rn can be identified with a n × 1
matrix (i.e. a single-column matrix):

x =

x1
...
xn

 =
[
x1 · · · xn

]T

Multiplication of a matrix A containing the vectors
a(1), . . . , a(k) with a vector of coefficients λ1, . . . , λk

yields a linear combination of a(1), . . . , a(k):

A ·

λ1
...
λk

 = λ1a(1) + · · ·+ λka(k)
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Matrix algebra with R

R as a toy DSM laboratory

Matrix algebra is a powerful and convenient tool in numerical
mathematics Ü implement DSM with matrix operations

Specialised (and highly optimised) libraries are available for
various programming languages (C, C++, Perl, Python, . . . )

Some numerical programming environments are even based
entirely on matrix algebra (Matlab, Octave, NumPy/Sage)

Statistical software packages like R also support matrices

R as a DSM laboratory for toy models
http://www.r-project.org/

Integrates efficient matrix operations with
statistical analysis, clustering, machine
learning, visualisation, . . .
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Matrix algebra with R

Matrix algebra with R

Vectors in R:

u1 <- c(3, 0, 2)

u2 <- c(0, 2, 2)

v <- 1:6
print(v)
[1] 1 2 3 4 5 6

Defining matrices:

A <- matrix(v, nrow=3)
print(A)

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6
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Matrix algebra with R

Matrix algebra in R

Matrix of column vectors:

B <- cbind(u1, u2)
print(B)

u1 u2

[1,] 3 0

[2,] 0 2

[3,] 2 2

Matrix of row vectors:

C <- rbind(u1, u2)
print(C)

[,1] [,2] [,3]

u1 3 0 2

u2 0 2 2
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Matrix algebra with R

Matrix algebra in R

Matrix multiplication:

A %*% C
[,1] [,2] [,3]

[1,] 3 8 10

[2,] 6 10 14

[3,] 9 12 18

NB: * does not perform matrix multiplication

Also for multiplication of matrix with vector:

C %*% c(1,1,0)
[,1]

u1 3

u2 2

+ result of multiplication is a column vector (i.e. plain vectors
are interpreted as column vectors in matrix operations)
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Matrix algebra with R

Matrix algebra in R

Transpose of matrix:

t(A)
[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

Transposition of vectors:

t(u1) (row vector)

[,1] [,2] [,3]

[1,] 3 0 2

t(t(u1)) (explicit column vector)

[,1]

[1,] 3

[2,] 0

[3,] 2

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 28 July 2009 38 / 71



Matrix algebra with R

Matrix algebra in R

Rank of a matrix:

qr(A)$rank
2

la.rank <- function (A) qr(A)$rank

la.rank(A)

Column rank = row rank:

la.rank(A) == la.rank(t(A))
[1] TRUE

AT · A is symmetric (can you prove this?):

t(A) %*% A
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Matrix algebra and linear maps

Linear maps

A linear map is a homomorphism between two vector spaces
V and W , i.e. a function f : V →W that is compatible with
addition and s-multiplication:

1 f (u + v) = f (u) + f (v)
2 f (λu) = λ · f (u)

Obviously, f is uniquely determined by the images
f
(
b(1)

)
, . . . , f

(
b(n)

)
of any basis b(1), . . . ,b(n) of V

Using natural coordinates, a linear map f : Rn → Rk can
therefore be described by the vectors

f
(
e(1)
)
≡E


a11

a21
...

ak1

 , . . . , f
(
e(n)
)
≡E


a1n

a2n
...

akn


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Matrix algebra and linear maps

Matrix representation of a linear map

For a vector u = x1e(1) + · · ·+ xne(n) ∈ Rn, we have

v = f (u) = f
(
x1e(1) + · · ·+ xne(n)

)
= x1 · f

(
e(1)
)

+ · · ·+ xn · f
(
e(n)
)

and hence the natural coordinate vector y of v is given by

yj = x1 · aj1 + x2 · aj2 + · · ·+ xn · ajn

This corresponds to matrix multiplicationy1
...

yk

 =

a11 · · · a1n
...

...
ak1 · · · akn

 ·
x1

...
xn


å v = f (u) ⇐⇒ y = A · x
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Matrix algebra and linear maps

Image & kernel

The image of a linear map f : Rn → Rk is the subspace of all
values v ∈ Rk that f (u) can assume for u ∈ Rn:

Im (f ) := sp
(
f
(
e(1)
)
, . . . , f

(
e(n)
))

The rank of f is defined by rank (f ) := dim
(
Im (f )

)
rank (f ) = rank (A) for the matrix representation A

f is surjective (onto) iff Im (f ) = Rk , i.e. rank (f ) = k

The kernel of f is the subspace of all x ∈ Rn that are mapped
to 0 ∈ Rk :

Ker (f ) := {x ∈ Rn | f (x) = 0}
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Matrix algebra and linear maps

Rank & composition

We have dim
(
Im (f )

)
+ dim

(
Ker (f )

)
= n

f is injective iff every v ∈ Im (f ) has a unique preimage
v = f (u), i.e. iff Ker (f ) =

{
0
}

or rank (f ) = n

The composition of linear maps corresponds
to matrix multiplication:

I f : Rn → Rk given by a k × n matrix A
I g : Rk → Rm given by a m × k matrix B
I recall that (g ◦ f )(u) := g(f (u))

å the composition g ◦ f : Rn → Rm is given
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Matrix algebra and linear maps

The inverse matrix

A linear map f : Rn → Rn is called an endomorphism
I can be represented by a square matrix A

f surjective ⇐⇒ rank (f ) = n ⇐⇒ f injective

rank (f ) = rank
(
f
(
e(1)
)
, . . . , f

(
e(n)
))

= n
⇐⇒ rank (A) = n ⇐⇒ det A 6= 0

å f bijective (one-to-one) ⇐⇒ det A 6= 0

If f is bijective, there exists an inverse function
f −1 : Rn → Rn, which is also a linear map and satisfies
f −1(f (u)) = u and f (f −1(v)) = v

f −1 is given by the inverse matrix A−1 of A,
which must satisfy A−1 · A = A · A−1 = I
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Matrix algebra Solving equation systems

Linear equation systems

Recall that a linear system of equations can be written in
compact matrix notation:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

ak1x1 + ak2x2 + · · ·+ aknxn = bk

Obviously, A describes a linear map f : Rn → Rk , and the
linear system of equations can be written f (x) = b

This linear system can be solved iff b ∈ Im (f ), i.e. iff b is a
linear combination of the column vectors of A

The solution is given by the coefficients x1, . . . , xn

of this linear combination
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Matrix algebra Solving equation systems

Linear equation systems

The linear system has a solution for arbitrary b ∈ Rk

iff f is surjective, i.e. iff rank (A) = k

Solutions of the linear system are unique iff f is injective, i.e.
iff rank (A) = n (the column vectors are linearly independent)

If k = n (i.e. A is a square matrix), the linear map f is an
endomorphism. Consequently, the linear system has a unique
solution for arbitrary b iff det A 6= 0

In this case, the solution can be computed with the inverse
function f −1 or the inverse matrix A−1:

x = f −1(b) = A−1 · b

+ practically, A−1 is often determined by solving the corresponding

linear system of equations
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Matrix algebra Solving equation systems

Linear equation systems

Solving equation systems in R:

A <- rbind(c(1,3), c(2,-1))

b <- c(5,3)

la.rank(A) (test that A is invertible)

A.inv <- solve(A) (inverse matrix A−1)

print(round(A.inv, digits=3))
[,1] [,2]

[1,] 0.143 0.429

[2,] 0.286 -0.143

A.inv %*% b
[,1]

[1,] 2

[2,] 1

solve(A, b) (recommended: calculate A−1 · b directly)
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Matrix algebra Coordinate transformation

Coordinate transformations

We want to transform between coordinates with respect to
a basis b(1), . . . ,b(n) and standard coordinates in Rn

x1

x2

1 2 3 4 5

1

2

3

4

5

6

6 u=(4,5)

b(2)

b(1)
e(1)

e(2)
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Matrix algebra Coordinate transformation

Coordinate transformations

The basis can be represented by a matrix B whose columns
are the standard coordinates of b(1), . . . ,b(n)

Given a vector u ∈ Rn with standard coordinates u ≡E x and
B-coordinates u ≡B y, we have

u = y1b(1) + · · ·+ ynb(n)

In standard coordinates, this equation corresponds to matrix
multiplication:

x = B · y

å Matrix B transforms B-coordinates into standard coordinates
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Matrix algebra Coordinate transformation

Coordinate transformations

To transform from standard coordinates into B-coordinates,
i.e. from x to y, we must solve the linear system x = By

Since the b(i) are linearly independent, B is regular and the
inverse B−1 exists, so that

y = B−1x

å The inverse matrix B−1 transforms from standard coordinates
into B-coordinates

Recall that BB−1 = B−1B = I (transform back & forth)

Transformation from B-coordinates (u ≡B y) into arbitrary
C -coordinates (u ≡C z):

z = C−1By
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Matrix algebra Coordinate transformation

Coordinate transformations: an example

x1

x2

1 2 3 4 5

1

2

3

4

5

6

6 u=(4,5)

b(2)

b(1)
e(1)

e(2)
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Matrix algebra Coordinate transformation

Coordinate transformations: an example

Basis b(1) = (2, 1), b(2) = (−1, 1) with matrix representation

B =

[
2 −1
1 1

]
, B−1 =

[
1
3

1
3

− 1
3

2
3

]

Vector u = (4, 5) with standard and B-coordinates

u ≡E

[
4
5

]
, u ≡C

[
3
2

]
Check that these equalities hold:[

4
5

]
=

[
2 −1
1 1

] [
3
2

]
,

[
3
2

]
=

[
1
3

1
3

− 1
3

2
3

][
4
5

]

Now perform the calculations in R!
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DSM laboratory Introduction

Playtime: toy DSM laboratory

Goal: construct and analyse DSM entirely in R

We will build the small noun-verb matrix from the introduction

Data: verb-object co-occurrence tokens from British National
Corpus (extracted with regexp query, both words lemmatised)

Text table with 3,406,821
co-occurence tokens in file
bnc_vobj_filtered.txt.gz

acquire deficiency
affect body
fight infection
face condition

serve interest
put back

Evert & Lenci (ESSLLI 2009) DSM: Matrix Algebra 28 July 2009 53 / 71

bnc_vobj_filtered.txt.gz


DSM laboratory Frequency counts

Preliminaries

# This is a comment: do not type comment lines into R!
# You should be able to execute most commands by copy & paste
> (1:10)^2
[1] 1 4 9 16 25 36 49 64 81 100

# The > indicates the R command prompt; it is not part of the input!
# Output of an R command is shown in blue below the command

# Long commands may require continuation lines starting with +;
# you should enter such commands on a single line, if possible
> c(1,
+ 2,
+ 3)
[1] 1 2 3
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DSM laboratory Frequency counts

Reading the co-occurrence tokens

# Load tabular data with read.table(); options save memory and ensure
# that strings are loaded correctly; gzfile() decompresses on the fly
> tokens <- read.table(gzfile("bnc_vobj_filtered.txt.gz"),
+ colClasses="character", quote="",
+ col.names=c("verb", "noun"))

# You must first ‘‘change working directory’’ to where you have saved the file;
# if you can’t, then replace filename by file.choose() above

# If you have problems with the compressed file, then decompress the disk file
# (some Web browsers may do this automatically) and load with
> tokens <- read.table("bnc_vobj_filtered.txt",
+ colClasses="character", quote="",
+ col.names=c("verb", "noun"))
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DSM laboratory Frequency counts

Reading the co-occurrence tokens

# The variable tokens now holds co-occurrence tokens as a table
# (in R lingo, such tables are called data.frames)

# Size of the table (rows, columns) and first 6 rows
> dim(tokens)
[1] 3406821 2

> head(tokens, 6)
verb noun

1 acquire deficiency

2 affect body

3 fight infection

4 face condition

5 serve interest

6 put back
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DSM laboratory Frequency counts

Filtering selected verbs & nouns

# Example matrix for selected nouns and verbs
> selected.nouns <- c("knife","cat","dog","boat","cup","pig")
> selected.verbs <- c("get","see","use","hear","eat","kill")

# %in% operator tests whether value is contained in list;
# note the single & for logical ‘‘and’’ (vector operation)
> tokens <- subset(tokens, verb %in% selected.verbs &
+ noun %in% selected.nouns)

# How many co-occurrence tokens are left?
> dim(tokens)
[1] 924 2

> head(tokens, 5)
verb noun

2813 get knife

6021 see pig

6489 see cat

24130 see cat

26620 see boat
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DSM laboratory Frequency counts

Co-occurrence counts

# Contstruct matrix of co-occurrence counts (contingency table)
> M <- table(tokens$noun, tokens$verb)
> M

eat get hear kill see use

boat 0 59 4 0 39 23

cat 6 52 4 26 58 4

cup 1 98 2 0 14 6

dog 33 115 42 17 83 10

knife 3 51 0 0 20 84

pig 9 12 2 27 17 3

# Use subscripts to extract row and column vectors
> M["cat", ]
eat get hear kill see use

6 52 4 26 58 4

> M[, "use"]
boat cat cup dog knife pig

23 4 6 10 84 3
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DSM laboratory Frequency counts

Marginal frequencies

# For the calculating association scores, we need the marginal frequencies
# of the nouns and verbs; for simplicity, we obtain them by summing over the
# rows and columns of the table (this is not mathematically correct!)
> f.nouns <- rowSums(M)
> f.verbs <- colSums(M)
> N <- sum(M) # sample size (sum over all cells of the table)

> f.nouns
boat cat cup dog knife pig

125 150 121 300 158 70

> f.verbs
eat get hear kill see use

52 387 54 70 231 130

> N
[1] 924
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DSM laboratory Frequency counts

Expected and observed frequencies

Expected frequencies: Eij =
f

(noun)
i · f (verb)

j

N

can be calculated efficiently with outer product f(n) · (f(v))T :[
x1

x2

]
·
[
y1 y2 y3

]
=

[
x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

]

> E <- f.nouns %*% t(f.verbs) / N
> round(E, 1)

eat get hear kill see use

[1,] 7.0 52.4 7.3 9.5 31.2 17.6

[2,] 8.4 62.8 8.8 11.4 37.5 21.1

[3,] 6.8 50.7 7.1 9.2 30.2 17.0

...

# Observed frequencies are simply the entries of M
> O <- M
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DSM laboratory Frequency counts

Expected and observed frequencies

Expected frequencies: Eij =
f

(noun)
i · f (verb)

j

N

can be calculated efficiently with outer product f(n) · (f(v))T :[
x1

x2

]
·
[
y1 y2 y3

]
=

[
x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

]
> E <- f.nouns %*% t(f.verbs) / N
> round(E, 1)

eat get hear kill see use

[1,] 7.0 52.4 7.3 9.5 31.2 17.6

[2,] 8.4 62.8 8.8 11.4 37.5 21.1

[3,] 6.8 50.7 7.1 9.2 30.2 17.0

...

# Observed frequencies are simply the entries of M
> O <- M
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DSM laboratory Feature scaling

Feature scaling: log frequencies

# Because of Zipf’s law, frequency distributions are highly skewed;
# DSM matrix M will be dominated by high-frequency entries

# Solution 1: transform into logarithmic frequencies
> M1 <- log10(M + 1) # discounted (+1) to avoid log(0)
> round(M1, 2)

eat get hear kill see use

boat 0.00 1.78 0.70 0.00 1.60 1.38

cat 0.85 1.72 0.70 1.43 1.77 0.70

cup 0.30 2.00 0.48 0.00 1.18 0.85

dog 1.53 2.06 1.63 1.26 1.92 1.04

knife 0.60 1.72 0.00 0.00 1.32 1.93

pig 1.00 1.11 0.48 1.45 1.26 0.60
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DSM laboratory Feature scaling

Feature scaling: association measures

Simple association measures can be expressed in terms of observed
(O) and expected (E ) frequencies, e.g. t-score:

t =
O − E√

O

You can implement any of the equations in (Evert 2008)

> M2 <- (O - E) / sqrt(O + 1) # discounted to avoid division by 0
> round(M2, 2)

eat get hear kill see use

boat -7.03 0.86 -1.48 -9.47 1.23 1.11

cat -0.92 -1.49 -2.13 2.82 2.67 -7.65

cup -4.11 4.76 -2.93 -9.17 -4.20 -4.17

dog 2.76 -0.99 3.73 -1.35 0.87 -9.71

knife -2.95 -2.10 -9.23 -11.97 -4.26 6.70

pig 1.60 -4.80 -1.21 4.10 -0.12 -3.42
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DSM laboratory Feature scaling

Feature scaling: sparse association measures

# ‘‘Sparse’’ association measures set all negative associations to 0;
# this can be done with ifelse(), a vectorised if statement
> M3 <- ifelse(O >= E, (O - E) / sqrt(O), 0)
> round(M3, 2)

eat get hear kill see use

boat 0.00 0.87 0.00 0.00 1.24 1.13

cat 0.00 0.00 0.00 2.87 2.69 0.00

cup 0.00 4.78 0.00 0.00 0.00 0.00

dog 2.81 0.00 3.78 0.00 0.88 0.00

knife 0.00 0.00 0.00 0.00 0.00 6.74

pig 1.69 0.00 0.00 4.18 0.00 0.00

# Pick your favourite scaling method here!
> M <- M2
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DSM laboratory Feature scaling

Visualisation: plot two selected dimensions

> M.2d <- M[, c("get", "use")]
> round(M.2d, 2)

get use

boat 0.86 1.11

cat -1.49 -7.65

cup 4.76 -4.17

dog -0.99 -9.71

knife -2.10 6.70

pig -4.80 -3.42

# Two-column matrix automatically interpreted as x- and y-coordinates
> plot(M.2d, pch=20, col="red", main="DSM visualisation")

# Add labels: the text strings are the rownames of M
> text(M.2d, labels=rownames(M.2d), pos=3)
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DSM laboratory Feature scaling

Visualisation: plot two selected dimensions
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DSM laboratory Nearest neighbours

Norm & distance

Intuitive length of vector x: Euclidean norm

x 7→ ‖x‖2 =
√

(x1)2 + (x2)2 + · · ·+ (xn)2

Euclidean distance metric: d2 (x, y) = ‖x− y‖2

+ more about norms and distances on Thursday

# R function definitions look almost like mathematical definitions

euclid.norm <- function (x) sqrt(sum(x * x))

euclid.dist <- function (x, y) euclid.norm(x - y)
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DSM laboratory Nearest neighbours

Normalisation to unit length

# Compute lengths (norms) of all row vectors
> row.norms <- apply(M, 1, euclid.norm) # 1 = rows, 2 = columns
> round(row.norms, 2)
boat cat cup dog knife pig

12.03 9.01 12.93 10.93 17.45 7.46

# Normalisation: divide each row by its norm; this a rescaling of the row
# ‘‘dimensions’’ and can be done by multiplication with a diagonal matrix
> scaling.matrix <- diag(1 / row.norms)
> round(scaling.matrix, 3)

> M.norm <- scaling.matrix %*% M
> round(M.norm, 2)

eat get hear kill see use

[1,] -0.58 0.07 -0.12 -0.79 0.10 0.09

[2,] -0.10 -0.17 -0.24 0.31 0.30 -0.85

[3,] -0.32 0.37 -0.23 -0.71 -0.32 -0.32

...
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DSM laboratory Nearest neighbours

Distances between row vectors

# Matrix multiplication has lost the row labels (copy from M)
> rownames(M.norm) <- rownames(M)

# To calculate distances of all terms e.g. from ”dog”, apply euclid.dist()
# function to rows, supplying the ”dog” vector as fixed second argument
> v.dog <- M.norm["dog",]
> dist.dog <- apply(M.norm, 1, euclid.dist, y=v.dog)

# Now we can sort the vector of distances to find nearest neighbours
> sort(dist.dog)

dog cat pig cup boat knife

0.000000 0.839380 1.099067 1.298376 1.531342 1.725269
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DSM laboratory Nearest neighbours

The distance matrix

# R has a built-in function to compute a full distance matrix
> distances <- dist(M.norm, method="euclidean")
> round(distances, 2)

boat cat cup dog knife

cat 1.56

cup 0.73 1.43

dog 1.53 0.84 1.30

knife 0.77 1.70 0.93 1.73

pig 1.80 0.80 1.74 1.10 1.69

# If you want to search nearest neighbours, convert triangular distance
# matrix to full symmetric matrix and extract distance vectors from rows
> dist.matrix <- as.matrix(distances)
> sort(dist.matrix["dog",])

dog cat pig cup boat knife

0.000000 0.839380 1.099067 1.298376 1.531342 1.725269
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DSM laboratory Nearest neighbours

Clustering and semantic maps

# Distance matrix is also the basis for a cluster analysis
> plot(hclust(distances))

# Visualisation as semantic map by projection into 2-dimensional space;
# uses non-linear multidimensional scaling (MDS)
> library(MASS)
> M.mds <- isoMDS(distances)$points
initial value 2.611213

final value 0.000000

converged

# Plot works in the same way as for the two selected dimensions above
> plot(M.mds, pch=20, col="red", main="Semantic map",
+ xlab="Dim 1", ylab="Dim 2")
> text(M.mds, labels=rownames(M.mds), pos=3)
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DSM laboratory Nearest neighbours

Clustering and semantic maps
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