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Spelling Correction 
�  We can detect spelling errors (spell check) by 

building an FST-based lexicon and noting any 
strings that are rejected. 

�  But how do I fix “graffe”? That is, how do I 
come up with suggested corrections? 
◦  Search through all words in my lexicon 
�  Graft, craft, grail, giraffe, crafted, etc. 

◦  Pick the one that’s closest to graffe 
◦  But what does “closest” mean? 
�  We need a distance metric. 
�  The simplest one: minimum edit distance 

�  As in the Unix diff command 
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Dynamic programming 
•  Algorithm design technique often used for 

optimization problems 

•  Generally usable for recursive approaches if 
the same partial solutions are required more 
than once  

 
•  Approach: store partial results in a table 
 
•  Advantage: improvement of complexity, often 

polynomial instead of exponential 
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Two different approaches 
Bottom-up: 
+   controlled efficient table management, saves time 
+   special optimized order of computation, saves space 
-    requires extensive recoding of the original program 
-  possible computation of unnecessary values 
 
Top-down: (Note-pad method) 
+  original program changed only marginally or not at all 
+  computes only those values that are actually required 
-  separate table management takes additional time 
-  table size often not optimal 
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Edit Distance 
� The minimum edit distance between 

two strings is the minimum number of 
editing operations 
◦  Insertion 
◦ Deletion 
◦  Substitution 

�  that one would need to transform one 
string into the other 



Note 
� The following discussion has 2 goals 

1.  Learn the minimum edit distance 
computation and algorithm 

2.  Introduce dynamic programming 
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Min Edit Example 
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Minimum Edit Distance 

�  If each operation has cost of 1 
distance between these is 5 

�  If substitutions cost 2 (Levenshtein) 
distance between these is 8 
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Min Edit As Search 
�  That’s all well and good but how did we find that 

particular (minimum) set of operations for those 
two strings? 

�  We can view edit distance as a search for a path 
(a sequence of edits) that gets us from the start 
string to the final string 
◦  Initial state is the word we’re transforming 
◦  Operators are insert, delete, substitute 
◦  Goal state is the word we’re trying to get to 
◦  Path cost is what we’re trying to minimize: the number 

of edits 
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Min Edit as Search 
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Min Edit As Search 
�  But that generates a huge search space 
�  Navigating that space in a naïve backtracking 

fashion would be incredibly wasteful 
�  Why? 
 

Lots of distinct paths wind up at the 
same state. But there is no need to 
keep track of the them all.  We only 
care about the shortest path to each of 
those revisited states. 
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Defining Min Edit Distance 
� For two strings S1 of len n, S2 of len m 
◦  distance(i,j) or D(i,j) 
�  Is the min edit distance of S1[1..i] and S2[1..j] 

�  That is,  the minimum number of edit operations need 
to transform the first i characters of S1 into the first j 
characters of S2 

�  The edit distance of S1, S2 is D(n,m) 

�  We compute D(n,m) by computing D(i,j) for 
all i (0 < i < n)  and  

  j (0 < j < m) 

1/20/15 
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Minimum Edit Distance Algorithm 

� Create Matrix 
�  Initialize 1 – length in LH column and 

bottom row 
�  For each cell 
◦ Take the minimum of: 
�  Deletion: +1 from left cell 
�  Insertion: +1 from cell below 
�  Substitution: Diagonal +0 if same +2 if different 

◦ Keep track of where you came from 



Example 

�  Minimum of: 
◦  1+1 (left right) 
◦  1+1 (bottom up) 
◦  0+0 (diagonal) 

�  Minimum of: 
◦  0+1 (left right) 
◦  2+1 (bottom up) 
◦  1+2 (diagonal) 

T 5 

H 4 

G 3 

I 2 

R 1 

# 0 1 2 3 4 

# R I T E 



Answer to Right-Rite 
T 5 6, 6, 4 5, 5, 5 6, 2, 4 3, 5, 5 

H 4 5, 5, 3 4, 4, 2 3, 3, 3 4, 4, 4 

G 3 4, 4, 2 3, 3, 1 2, 2, 2 3, 3, 3 

I 2 3, 3, 1 2, 0, 2  1, 3, 3  2, 4, 4 

R 1 2, 0, 2 1, 3, 3 2, 4, 4 3, 5, 5 

# 0 1 2 3 4 

# R I T E 

In each box X, Y, Z values are 
    X:  From left:  Insert-add one from left box 
    Y:  Diagonal, Compare-0 if same, 2 if different 
    Z:  From below:  Delete-add one from lower box 

Minimum is highlighted  
in red with arrow to source 
NOTE:  All boxes will have arrows. 
I didn’t show them all. 
Only one path back to root. 
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Defining Min Edit Distance 
� Base conditions: 
◦ D(i,0) = i 
◦ D(0,j) = j 

◦ Recurrence Relation: 
                        D(i-1,j) + 1 
◦ D(i,j) = min     D(i,j-1) + 1 
                        D(i-1,j-1) +     2;  if S1(i) ≠ S2(j)    
                                             0;  if S1(i) = S2(j) 

1/20/15 
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Dynamic Programming 
� A tabular computation of D(n,m) 
� Bottom-up 
◦ We compute D(i,j) for small i,j  
◦ And compute larger D(i,j) based on 

previously computed smaller values 

1/20/15 



1/20/15 19 

N 9 
O 8 
I 7 

T 6 
N 5 
E 4 
T 3 
N 2 
I 1 
# 0 1 2 3 4 5 6 7 8 9 

# E X E C U T I O N 

The Edit Distance Table 
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N 9 
O 8 
I 7 

T 6 
N 5 
E 4 
T 3 
N 2 
I 1 
# 0 1 2 3 4 5 6 7 8 9 

# E X E C U T I O N 
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N 9 8 9 10 11 12 11 10 9 8 
O 8 7 8 9 10 11 10 9 8 9 
I 7 6 7 8 9 10 9 8 9 10 

T 6 5 6 7 8 9 8 9 10 11 
N 5 4 5 6 7 8 9 10 11 10 
E 4 3 4 5 6 7 8 9 10 9 
T 3 4 5 6 7 8 7 8 9 8 
N 2 3 4 5 6 7 8 7 8 7 
I 1 2 3 4 5 6 7 6 7 8 
# 0 1 2 3 4 5 6 7 8 9 

# E X E C U T I O N 
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Min Edit Distance 
� Note that the result isn’t all that 

informative 
◦  For a pair of strings we get back a single 

number 
�  The min number of edits to get from here to 

there 

� That’s like a map routing program that 
tells you the distance from here to 
Denver but doesn’t tell you how to get 
there. 
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Paths 
� Keep a back pointer 
◦  Every time we fill a cell add a pointer back 

to the cell that was used to create it (the 
min cell that lead to it) 
◦ To get the sequence of operations follow 

the backpointer from the final cell 
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N 9 8 9 10 11 12 11 10 9 8 
O 8 7 8 9 10 11 10 9 8 9 
I 7 6 7 8 9 10 9 8 9 10 

T 6 5 6 7 8 9 8 9 10 11 
N 5 4 5 6 7 8 9 10 11 10 
E 4 3 4 5 6 7 8 9 10 9 
T 3 4 5 6 7 8 7 8 9 8 
N 2 3 4 5 6 7 8 7 8 7 
I 1 2 3 4 5 6 7 6 7 8 
# 0 1 2 3 4 5 6 7 8 9 

# E X E C U T I O N 

Backtrace 
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Adding Backtrace to MinEdit 
�  Base conditions: 
◦  D(i,0) = i 
◦  D(0,j) = j 

�  Recurrence Relation: 
                        D(i-1,j) + 1 
◦  D(i,j) = min     D(i,j-1) + 1 
                        D(i-1,j-1) +     1;  if S1(i) ≠ S2(j)    
                                             0;  if S1(i) = S2(j) 
                 LEFT 
ptr(i,j)       DOWN 
                 DIAG 

1/20/15 

Case 1 

Case 2 

Case 3 

Case 1 

Case 2 

Case 3 
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Complexity 
� Time: 

    O(nm) 

� Space: 
    O(nm) 

� Backtrace 
    O(n+m) 
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Alignments 
� An alignment is a 1 to 1 pairing of each 

element in a sequence with a 
corresponding element in the other 
sequence or with a gap... 

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- 
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC 
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Weighted Edit Distance 
�  Why would we want to add weights to the 

minimum edit distance  computation? 
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Confusion matrix 

1/20/15 



30 

Problem: similarity of strings 
Edit distance 
  
 For two given A and B, compute, as efficiently as 
possible, the edit distance D(A,B) and a minimal 
sequence of edit operations which transforms A 
into B. 

 
 i    n    f    -    -    -    o    r     m    a     t     i    k    
- 
 i    n    t    e   r    p    o   l      -      a     t     i    o   
n 
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Problem: similarity of strings 
Approximate string matching 
  
 For a given text T, a pattern P, and a distance d,  
find all substrings P´ in T with D(P,P´) ≤ d 

 
 
Sequence alignment   
  
 Find optimal alignments of DNA sequences 

 
 G A G C A -  C T T G G A T T C T C G G 
  -  -  -  C A C G T G G -  -  -  -  -   -  -  -   - 
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Edit distance 
Given: two strings A = a1a2 .... am   and  B = b1b2 ... bn 
 
Wanted:  minimal cost D(A,B) for a sequence of 

edit operations 
to transform A into B. 

 
Edit operations: 

 
1. Replace one character in A by a character from B 
2. Delete one character from A 
3. Insert one character from B 
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Edit distance 
Cost model: 

possible    ,
 if0

  if 1
),(

εε ==
⎩
⎨
⎧

=

≠
=

ba
ba
ba

bac

We assume the triangle inequality holds for c: 
 

  c(a,c)  ≤  c(a,b) + c(b,c) 
 
à  Each character is changed at most once 



34 

Edit distance 
Trace as representation of edit sequences 
 

  A =       b  a  a  c  a  a  b  c 
   
  B =   a  b  a  c  b  c  a  c 

 
or using indels 
 

  A =   -   b  a  a  c  a   -  a  b  c 
   
  B =   a  b  a  -   c  b  c  a  -   c 

 
Edit distance (cost): 5 
 
Division of an optimal trace results in two optimal sub-traces 
à  dynamic programming can be used 
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Computation of the edit distance 

 
Let Ai = a1...ai  and  Bj = b1....bj 
 

   Di,j = D(Ai,Bj) 
 
 
A  
 
B 
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Computation of the edit distance 

Three possibilities of ending a trace: 
 
1. am is replaced by bn : 
 Dm,n = Dm-1,n-1 + c(am, bn) 

 
2. am is deleted: Dm,n = Dm-1,n + 1 
 
3. bn is inserted: Dm,n = Dm,n-1 + 1 
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Computation of the edit distance 

Recurrence relation, if m,n ≥ 1: 
 
 
 
 
 
à Computation of all Di,j is required, 0 ≤ i ≤ 

m, 0 ≤ j ≤ n. 
 
 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+

+

+

=

−

−

−−

1
,1
),,(

min

1,

,1

1,1

,

nm

nm

nmnm

nm

D
D

bacD
D

Di-1,j-1 Di-1,j 

Di,j Di,j-1 

+d +1 

+1 
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Recurrence relation for the edit 
distance 
Base cases: 
    D0,0  = D(ε, ε) = 0 
    D0,j    = D(ε, Bj) = j 
    Di,0   = D(Ai,ε) = i 

 
 
Recurrence equation: 
 

⎪
⎭

⎪
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⎪
⎩

⎪
⎨

⎧

+

+

+

=

−

−
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,1
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,

ji

ji
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ji

D
D

bacD
D
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Order of computation for the edit 
distance      b1   b2   b3   b4           .....                                  bn 

a1 

am 

Di-1,j 

Di,j 

Di-1,j-1 

Di,j-1 

a2 
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Algorithm for the edit distance 
Algorithm edit_distance 
Input: two strings A = a1 .... am and B = b1 ... bn  
Output: the matrix D = (Dij) 
1 D[0,0] := 0 
2 for i := 1 to m do D[i,0] = i 
3 for j := 1 to n do D[0,j] = j 
4 for i := 1 to m do  
5  for j := 1 to n do  
6  D[i,j] := min( D[i - 1,j] + 1, 
7           D[i,j - 1] + 1, 
8           D[i –1, j – 1] + c(ai,bj))  
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Example 

a b a c 

0 1 2 3 4 

b 1 

a 2 

a 3 

c 4 
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Computation of the edit operations 
Algorithm edit_operations (i,j) 
Input:  matrix D (computed) 
1   if i = 0 and j = 0 then return 
2   if i ≠ 0 and D[i,j] = D[i – 1 , j] + 1 
3    then „delete a[i]“ 
4       edit_operations (i – 1, j) 
5   else if j ≠ 0 and D[i,j] = D[i, j – 1] + 1 
6       then „insert b[j]“ 
7        edit_operations (i, j – 1) 
8   else 

   /* D[i,j] = D[i – 1, j – 1 ] + c(a[i], b[j])  */ 
9       „replace a[i] by b[j] “ 
10           edit_operations (i – 1, j – 1) 
 
Initial call: edit_operations(m,n) 
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Trace graph of the edit operations 

0 

1 

2 

3 

4 

1 2 3 4 

1 1 2 3 

1 2 2 3 

2 2 2 3 

3 3 3 2 

B  =          a            b            a           c 

A   =  

b 

a 

a 

c 
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Sub-graph of the edit operations 
Trace graph: Overview of all possible traces for the 

transformation  
of A into B, directed edges from vertex (i, j) to (i + 1, j), 

(i, j + 1) and  
(i + 1, j + 1). 
Weights of the edges represent the edit costs. 
 
Costs are monotonic increasing along an optimal path. 
 
Each path with monotonic increasing cost from the 

upper left corner  
to the lower right corner represents an optimal trace. 
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Approximate string matching 
Given: two strings P = p1p2 ... pm (pattern) and  

      T = t1t2 ... tn (text) 
 
Wanted: an interval [j´, j], 1 ≤ j´ ≤ j ≤ n, such that the substring  

      Tj´ , j = tj´ ... tj  of T is the one with the greatest similarity to 
      pattern P, i.e. for all other intervals [k´ , k], 1 ≤ k´ ≤ k ≤ n: 
 
      D(P,Tj´, j)  ≤  D(P, Tk´, k) 

T 

P 

j 
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Approximate string matching 

 
 
Naïve approach: 
  
 for all 1 ≤ j´ ≤ j ≤ n do 
  compute D(P,Tj´, j)  
 choose minimum 
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Approximate string matching 

Consider a related problem: 
 T 

j 

i 
E(i, j) 

P 

For each text position j and each pattern position i  
compute the edit distance of the substring Tj´,j of T  
ending at j which has the greatest similarity to Pi. 
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Approximate string matching 
Method: 
for all 1 ≤ j  ≤ n do 

 compute j´ such that D(P,Tj´, j) is minimal 
 
 
For 1 ≤ i  ≤ m  and  0 ≤ j  ≤ n  let: 
 
 
 
Optimal trace: 
 

    Pi =  b  a  a  c  a  a  b  c 
   
          Tj´, j =   b  a  c  b  c  a  c   

 

),(min ,1´1, jjijjji TPDE ʹ′+≤ʹ′≤
=
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Approximate string matching 
Recurrence relation: 
 
 
 
 
 
Remark: 
j´ can be completely different for Ei-1, j-1, Ei – 1,j  

and  Ei, j – 1. 
A subtrace of an optimal trace is an optimal 

subtrace. 

⎪
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Approximate string matching 
Base cases: 
 

   E0,0  =    E(ε, ε)  = 0 
   Ei,0   =    E(Pj ,ε) = i 

but 
   E0,j   =   E(ε ,Tj) = 0 

 
Observation: 
The optimal edit sequence from P to Tj´, j  does not start  
with an insertion of tj´ . 
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Approximate string matching 

0 

1 

2 

3 

4 

0 0 0 0 

0 1 1 1 

1 1 2 1 

2 1 1 2 

3 2 1 2 

0 

0 

1 

2 

3 

0 0 0 0 

1 1 1 1 

0 1 2 2 

1 1 1 2 

2 2 1 2 

5 4 3 2 2 3 3 2 2 1 

T  =       a         b         b        d          a         d        c          b         c 
P 

= 

a 

d 

b 

b 

c 

Dependency graph 
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Approximate string matching 
Theorem 
 
If there is a path from E0, j´- 1 to Ei, j in the 

dependency graph, then 
Tj´, j is a substring of T ending in j with the 

greatest similarity to Pi  
and 
 
    D(Pi, Tj´,j) = Ei, j 



Back To Spelling 
� Remember graffe… 
� We can compute the score/distance 

between graffe and assorted candidates 
� MS Word gives 
◦  giraffe 
◦  gaffe 
◦  giraffes 
◦  graft 
 

1/20/15 53 

How does it do that? 
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DP Search 
�  In the context of language processing 

(and signal processing) this kind of 
algorithm is often referred to as a DP 
search 
◦ Min edit distance 
◦ Viterbi and Forward algorithms 
◦ CKY and Earley 
◦ MT decoding 
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Word Prediction 
� Guess the next word... 
◦  So I notice three guys standing on the ??? 

What are some of the knowledge sources 
you used to come up with those 
predictions? 
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Word Prediction 
� We can formalize this task using what are 

called N-gram models 
◦ N-grams are token sequences of length N 
�  -gram means “written” 

� Our earlier example contains the following 
2-grams (aka bigrams) 
◦  (So I), (I notice), (notice three), (three guys), 

(guys standing), (standing on), (on the) 
� Given knowledge of counts of N-grams such 

as these, we can guess likely next words in 
a sequence. 
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N-Gram Models 
� More formally, we can use knowledge 

of the counts of N-grams to assess the 
conditional probability of candidate 
words as the next word in a sequence. 

� Or, we can use them to assess the 
probability of an entire sequence of 
words. 
◦  Pretty much the same thing as we’ll see... 
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Applications 
�  It turns out that being able to predict the 

next word (or any linguistic unit) in a 
sequence is an extremely useful thing to be 
able to do. 

�  As we’ll see, it lies at the core of the 
following applications 
◦  Automatic speech recognition 
◦  Handwriting and character recognition 
◦  Spelling correction 
◦  Machine translation 
◦  And many more 
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Counting  
� Simple counting lies at the core of any 

probabilistic approach. So let’s first 
take a look at what we’re counting. 
◦ He stepped out into the hall, was 

delighted to encounter a water brother. 
�  13 tokens, 15 if we include “,” and “.” as 

separate tokens. 
�  Assuming we include the comma and period as 

tokens, how many bigrams are there? 
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Counting 
�  Not always that simple 
◦  I do uh main- mainly business data processing 

�  Spoken language poses various challenges. 
◦  Should we count “uh” and other fillers as tokens? 
◦  What about the repetition of “mainly”? Should such 

do-overs count twice or just once? 
◦  The answers depend on the application. 

�  If we’re focusing on something like ASR to support indexing for 
search, then “uh” isn’t helpful (it’s not likely to occur as a query). 

�  But filled pauses are very useful in dialog management, so we 
might want them there 

�  Tokenization of text raises the same kinds of issues 
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Counting: Types and Tokens 
� How about 
◦ They picnicked by the pool, then lay back 

on the grass and looked at the stars. 
�  18 tokens (again counting punctuation) 

� But we might also note that “the” is 
used 3 times, so there are only 16 
unique types (as opposed to tokens). 

�  In going forward, we’ll have occasion 
to focus on counting both types and 
tokens of both words and N-grams. 
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Counting: Corpora 
� What happens when we look at large 

bodies of text instead of single utterances 
 

� Google Web Crawl 
◦  Crawl of 1,024,908,267,229 English tokens in Web text 
◦  13,588,391 wordform types 

�  That seems like a lot of types...  After all, even large dictionaries of 
English have only around 500k types. Why so many here? 

• Numbers 
• Misspellings 
• Names 
• Acronyms 
• etc 
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Language Modeling 
� Now that we know how to count, back 

to word prediction 
� We can model the word prediction 

task as the ability to assess the 
conditional probability of a word given 
the previous words in the sequence  
◦  P(wn|w1,w2…wn-1) 

� We’ll call a statistical model that can 
assess this a Language Model 
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Language Modeling 
� How might we go about calculating such 

a conditional probability?  
◦  One way is to use the definition of 

conditional probabilities and look for counts. 
So to get 
◦  P(the | its water is so transparent that) 

�  By definition, that is: 
P(its water is so transparent that the) 
  P(its water is so transparent that) 
We can get each of those from counts in a 

large corpus. 
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Very Easy Estimate 
�  How to estimate? 
◦  P(the | its water is so transparent that) 

 
P(the | its water is so transparent that) = 
 
Count(its water is so transparent that the) 
  Count(its water is so transparent that) 
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Very Easy Estimate 
� According to Google those counts are 

12000 and 19000 so the conditional 
probability of interest is...   

◦  P(the | its water is so transparent that) = 0.63 
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Language Modeling 
� Unfortunately, for most sequences and for 

most text collections we won’t get good 
estimates from this method. 
◦ What we’re likely to get is 0. Or worse 0/0. 
 

� Clearly, we’ll have to be a little more clever. 
◦  Let’s first use the chain rule of probability 
◦ And then apply a particularly useful 

independence assumption 
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The Chain Rule 
�  Recall the definition of conditional probabilities 
 
�  Rewriting: 

�  For sequences... 
◦  P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C) 

�  In general  
◦  P(x1,x2,x3,…xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…

xn-1) 
 

)(
)^()|(

BP
BAPBAP =

)()|()^( BPBAPBAP =
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The Chain Rule 

P(its water was so transparent)= 
P(its)* 
    P(water|its)* 
       P(was|its water)* 
          P(so|its water was)* 
             P(transparent|its water was so) 
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Unfortunately 

� There are still a lot of possible sequences in 
there 

�  In general, we’ll never be able to get 
enough data to compute the statistics for 
those longer prefixes 
◦  Same problem we had for the strings 

themselves 
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Independence Assumption 
� Make the simplifying assumption 
◦  P(lizard|

the,other,day,I,was,walking,along,and,saw
,a) = P(lizard|a) 

� Or maybe 
◦  P(lizard|

the,other,day,I,was,walking,along,and,saw
,a) = P(lizard|saw,a) 

� That is, the probability in question is 
to some degree independent of its 
earlier history. 
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So for each component in the product replace with the 
approximation (assuming a prefix of N - 1) 
 
 
 
 Bigram version 
 

€ 

P(wn |w1
n−1) ≈ P(wn |wn−N +1

n−1 )

Markov Assumption 

€ 

P(wn |w1
n−1) ≈ P(wn |wn−1)
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Estimating Bigram Probabilities 

� The Maximum Likelihood Estimate (MLE) 

€ 

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)
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An Example 
�  <s> I am Sam </s> 
�  <s> Sam I am </s> 
�  <s> I do not like green eggs and ham </s> 
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Maximum Likelihood Estimates  
�  The maximum likelihood estimate of some parameter of 

a model M from a training set T 
◦  Is the estimate that maximizes the likelihood of the training set T 

given the model M 

�  Suppose the word “Chinese” occurs 400 times in a 
corpus of a million words (Brown corpus) 

�  What is the probability that a random word from some 
other text from the same distribution will be “Chinese” 

�  MLE estimate is 400/1000000 = .004 
◦  This may be a bad estimate for some other corpus 

�  But it is the estimate that makes it most likely that 
“Chinese” will occur 400 times in a million word corpus. 
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Berkeley Restaurant Project 
Sentences 

�  can you tell me about any good cantonese 
restaurants close by 

�  mid priced thai food is what i’m looking for 
�  tell me about chez panisse 
�  can you give me a listing of the kinds of food that 

are available 
�  i’m looking for a good place to eat breakfast 
�  when is caffe venezia open during the day 
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Bigram Counts 
� Out of 9222 sentences 
◦  Eg. “I want” occurred 827 times 
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Bigram Probabilities 
� Divide bigram counts by prefix 

unigram counts to get probabilities. 
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Bigram Estimates of Sentence 
Probabilities 

� P(<s> I want english food </s>) = 
   P(i|<s>)* 

       P(want|I)* 
         P(english|want)* 
           P(food|english)* 
             P(</s>|food)* 
              =.000031 
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Kinds of Knowledge 

�  P(english|want)  = .0011 
�  P(chinese|want) =  .0065 
�  P(to|want) = .66 
�  P(eat | to) = .28 
�  P(food | to) = 0 
�  P(want | spend) = 0 
�  P (i | <s>) = .25 
 

§  As crude as they are, N-gram probabilities capture a 
range of interesting facts about language. 

World knowledge 

Syntax 

Discourse 



1/20/15 81 

Shannon’s Method 
� Assigning probabilities to sentences is 

all well and good, but it’s not terribly 
illuminating . A more entertaining task 
is to turn the model around and use it 
to generate random sentences that 
are like the sentences from which the 
model was derived. 

� Generally attributed to  
   Claude Shannon. 
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Shannon’s Method 
�  Sample a random bigram (<s>, w) according to the 

probability distribution over bigrams 
�  Now sample a new random bigram (w, x) according to 

its probability 
◦  Where the prefix w matches the suffix of the first. 

�  And so on until we randomly choose a (y, </s>) 
�  Then string the words together 
�  <s> I 
           I want 

       want to 
              to eat 
               eat Chinese 

         Chinese food 
                     food  </s> 
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Shakespeare 
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Shakespeare as a Corpus 
�  N=884,647 tokens, V=29,066 
�  Shakespeare produced 300,000 bigram 

types out of V2= 844 million possible 
bigrams... 
◦   So, 99.96% of the possible bigrams were never 

seen (have zero entries in the table) 
◦  This is the biggest problem in language 

modeling; we’ll come back to it. 
�  Quadrigrams are worse:   What's coming 

out looks like Shakespeare because it is 
Shakespeare 
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The Wall Street Journal is Not 
Shakespeare 
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Evaluating N-Gram Models 
� Best evaluation for a language model 
◦ Put model A into an application 
�  For example, a speech recognizer 
◦ Evaluate the performance of the 

application with model A 
◦ Put model B into the application and 

evaluate 
◦ Compare performance of the 

application with the two models 
◦ Extrinsic evaluation 
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Difficulty of extrinsic (in-vivo) 
evaluation of  N-gram models 
�  Extrinsic evaluation 
◦  This is really time-consuming 
◦  Can take days to run an experiment 

�  So 
◦  As a temporary solution, in order to run experiments 
◦  To evaluate N-grams we often use an intrinsic 

evaluation, an approximation called perplexity 
◦  But perplexity is a poor approximation unless the test 

data looks just like the training data 
◦  So is generally only useful in pilot experiments 

(generally is not sufficient to publish) 
◦  But is helpful to think about. 
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Model Evaluation 
�  How do we know if our models are any good? 
◦  And in particular, how do we know if one model is 

better than another. 
�  Well Shannon’s game gives us an intuition. 
◦  The generated texts from the higher order models 

sure look better.  
�  That is, they sound more like the text the model was 

obtained from. 
◦  The generated texts from the WSJ and Shakespeare 

models look different 
�  That is, they look like they’re based on different underlying 

models. 

�  But what does that mean? Can we make that 
notion operational? 
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Evaluation 
�  Standard method 
◦  Train parameters of our model on a training set. 
◦  Look at the models performance on some new data 

�  This is exactly what happens in the real world; we want to 
know how our model performs on data we haven’t seen 

◦  So use a test set. A dataset which is different than 
our training set, but is drawn from the same source 
◦  Then we need an evaluation metric to tell us how 

well our model is doing on the test set. 
�  One such metric is  perplexity 
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But First 
� But once we start looking at test data, 

we’ll run into words that we haven’t 
seen before (pretty much regardless 
of how much training data you have. 

�  With an Open Vocabulary task 
◦  Create an unknown word token <UNK> 
◦  Training of <UNK> probabilities 

�  Create a fixed lexicon L, of size V 
�  From a dictionary or  
�  A subset of terms from the training set 

�  At text normalization phase, any training word not in L changed 
to  <UNK> 

�  Now we count that like a normal word 
◦  At test time 

�  Use UNK counts for any word not in training 



1/20/15 91 

Perplexity 
� The intuition behind perplexity as a 

measure is the notion of surprise. 
◦ How surprised is the language model 

when it sees the test set? 
�  Where surprise is a measure of... 

� Gee, I didn’t see that coming... 

�  The more surprised the model is, the lower the 
probability it assigned to the test set 

�  The higher the probability, the less surprised it 
was 
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Perplexity 
�  Perplexity is the probability of a 

test set (assigned by the 
language model), as normalized 
by the number of words: 

�  Chain rule: 

�  For bigrams: 
 

§  Minimizing perplexity is the same as maximizing 
probability 
§  The best language model is one that best predicts an 

unseen test set 
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Lower perplexity means a 
better model 

 

� Training 38 million words, test 1.5 
million words, WSJ 


