
The Basics of Edit Distance

COSI 114 – Computational Linguistics
James Pustejovsky

January 20, 2015
Brandeis University

2

Spelling Correction
�  We can detect spelling errors (spell check) by

building an FST-based lexicon and noting any
strings that are rejected.

�  But how do I fix “graffe”? That is, how do I
come up with suggested corrections?
◦  Search through all words in my lexicon
�  Graft, craft, grail, giraffe, crafted, etc.

◦  Pick the one that’s closest to graffe
◦  But what does “closest” mean?
�  We need a distance metric.
�  The simplest one: minimum edit distance

�  As in the Unix diff command

3

Dynamic programming
•  Algorithm design technique often used for

optimization problems

•  Generally usable for recursive approaches if
the same partial solutions are required more
than once

•  Approach: store partial results in a table

•  Advantage: improvement of complexity, often

polynomial instead of exponential

4

Two different approaches
Bottom-up:
+ controlled efficient table management, saves time
+ special optimized order of computation, saves space
- requires extensive recoding of the original program
-  possible computation of unnecessary values

Top-down: (Note-pad method)
+ original program changed only marginally or not at all
+ computes only those values that are actually required
-  separate table management takes additional time
-  table size often not optimal

1/20/15 5

Edit Distance
� The minimum edit distance between

two strings is the minimum number of
editing operations
◦  Insertion
◦ Deletion
◦  Substitution

�  that one would need to transform one
string into the other

Note
� The following discussion has 2 goals

1.  Learn the minimum edit distance
computation and algorithm

2.  Introduce dynamic programming

1/20/15 6

1/20/15 7

Min Edit Example

1/20/15 8

Minimum Edit Distance

�  If each operation has cost of 1
distance between these is 5

�  If substitutions cost 2 (Levenshtein)
distance between these is 8

1/20/15 9

Min Edit As Search
�  That’s all well and good but how did we find that

particular (minimum) set of operations for those
two strings?

�  We can view edit distance as a search for a path
(a sequence of edits) that gets us from the start
string to the final string
◦  Initial state is the word we’re transforming
◦  Operators are insert, delete, substitute
◦  Goal state is the word we’re trying to get to
◦  Path cost is what we’re trying to minimize: the number

of edits

1/20/15 10

Min Edit as Search

1/20/15 11

Min Edit As Search
�  But that generates a huge search space
�  Navigating that space in a naïve backtracking

fashion would be incredibly wasteful
�  Why?

Lots of distinct paths wind up at the
same state. But there is no need to
keep track of the them all. We only
care about the shortest path to each of
those revisited states.

1/20/15 12

Defining Min Edit Distance
� For two strings S1 of len n, S2 of len m
◦  distance(i,j) or D(i,j)
�  Is the min edit distance of S1[1..i] and S2[1..j]

�  That is, the minimum number of edit operations need
to transform the first i characters of S1 into the first j
characters of S2

�  The edit distance of S1, S2 is D(n,m)

�  We compute D(n,m) by computing D(i,j) for
all i (0 < i < n) and

 j (0 < j < m)

1/20/15

Edit Distance
R I G H T

R I T E

D D D D D I I I I

1 1 1 1 1 1 1 1 1

R I G H T

R I T E

S S D

0 0 2 2 1

R I G H T

R I T E

D D I

0 0 1 1 0 1

Edit Distance

9

5

3

Minimum Edit Distance Algorithm

� Create Matrix
�  Initialize 1 – length in LH column and

bottom row
�  For each cell
◦ Take the minimum of:
�  Deletion: +1 from left cell
�  Insertion: +1 from cell below
�  Substitution: Diagonal +0 if same +2 if different

◦ Keep track of where you came from

Example

�  Minimum of:
◦  1+1 (left right)
◦  1+1 (bottom up)
◦  0+0 (diagonal)

�  Minimum of:
◦  0+1 (left right)
◦  2+1 (bottom up)
◦  1+2 (diagonal)

T 5

H 4

G 3

I 2

R 1

0 1 2 3 4

R I T E

Answer to Right-Rite
T 5 6, 6, 4 5, 5, 5 6, 2, 4 3, 5, 5

H 4 5, 5, 3 4, 4, 2 3, 3, 3 4, 4, 4

G 3 4, 4, 2 3, 3, 1 2, 2, 2 3, 3, 3

I 2 3, 3, 1 2, 0, 2 1, 3, 3 2, 4, 4

R 1 2, 0, 2 1, 3, 3 2, 4, 4 3, 5, 5

0 1 2 3 4

R I T E

In each box X, Y, Z values are
 X: From left: Insert-add one from left box
 Y: Diagonal, Compare-0 if same, 2 if different
 Z: From below: Delete-add one from lower box

Minimum is highlighted
in red with arrow to source
NOTE: All boxes will have arrows.
I didn’t show them all.
Only one path back to root.

17

Defining Min Edit Distance
� Base conditions:
◦ D(i,0) = i
◦ D(0,j) = j

◦ Recurrence Relation:
 D(i-1,j) + 1
◦ D(i,j) = min D(i,j-1) + 1
 D(i-1,j-1) + 2; if S1(i) ≠ S2(j)
 0; if S1(i) = S2(j)

1/20/15

18

Dynamic Programming
� A tabular computation of D(n,m)
� Bottom-up
◦ We compute D(i,j) for small i,j
◦ And compute larger D(i,j) based on

previously computed smaller values

1/20/15

1/20/15 19

N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

1/20/15 20

N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

1/20/15 21

N 9 8 9 10 11 12 11 10 9 8
O 8 7 8 9 10 11 10 9 8 9
I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11
N 5 4 5 6 7 8 9 10 11 10
E 4 3 4 5 6 7 8 9 10 9
T 3 4 5 6 7 8 7 8 9 8
N 2 3 4 5 6 7 8 7 8 7
I 1 2 3 4 5 6 7 6 7 8
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

1/20/15

Min Edit Distance
� Note that the result isn’t all that

informative
◦  For a pair of strings we get back a single

number
�  The min number of edits to get from here to

there

� That’s like a map routing program that
tells you the distance from here to
Denver but doesn’t tell you how to get
there.

1/20/15 23

Paths
� Keep a back pointer
◦  Every time we fill a cell add a pointer back

to the cell that was used to create it (the
min cell that lead to it)
◦ To get the sequence of operations follow

the backpointer from the final cell

1/20/15

N 9 8 9 10 11 12 11 10 9 8
O 8 7 8 9 10 11 10 9 8 9
I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11
N 5 4 5 6 7 8 9 10 11 10
E 4 3 4 5 6 7 8 9 10 9
T 3 4 5 6 7 8 7 8 9 8
N 2 3 4 5 6 7 8 7 8 7
I 1 2 3 4 5 6 7 6 7 8
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

Backtrace

1/20/15 25

Adding Backtrace to MinEdit
�  Base conditions:
◦  D(i,0) = i
◦  D(0,j) = j

�  Recurrence Relation:
 D(i-1,j) + 1
◦  D(i,j) = min D(i,j-1) + 1
 D(i-1,j-1) + 1; if S1(i) ≠ S2(j)
 0; if S1(i) = S2(j)
 LEFT
ptr(i,j) DOWN
 DIAG

1/20/15

Case 1

Case 2

Case 3

Case 1

Case 2

Case 3

1/20/15 26

Complexity
� Time:

 O(nm)

� Space:
 O(nm)

� Backtrace
 O(n+m)

1/20/15 27

Alignments
� An alignment is a 1 to 1 pairing of each

element in a sequence with a
corresponding element in the other
sequence or with a gap...

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

1/20/15 28

Weighted Edit Distance
�  Why would we want to add weights to the

minimum edit distance computation?

1/20/15 29

Confusion matrix

1/20/15

30

Problem: similarity of strings
Edit distance

 For two given A and B, compute, as efficiently as
possible, the edit distance D(A,B) and a minimal
sequence of edit operations which transforms A
into B.

 i n f - - - o r m a t i k
-
 i n t e r p o l - a t i o
n

31

Problem: similarity of strings
Approximate string matching

 For a given text T, a pattern P, and a distance d,
find all substrings P´ in T with D(P,P´) ≤ d

Sequence alignment

 Find optimal alignments of DNA sequences

 G A G C A - C T T G G A T T C T C G G
 - - - C A C G T G G - - - - - - - - -

32

Edit distance
Given: two strings A = a1a2 am and B = b1b2 ... bn

Wanted: minimal cost D(A,B) for a sequence of

edit operations
to transform A into B.

Edit operations:

1. Replace one character in A by a character from B
2. Delete one character from A
3. Insert one character from B

33

Edit distance
Cost model:

possible ,
 if0

 if 1
),(

εε ==
⎩
⎨
⎧

=

≠
=

ba
ba
ba

bac

We assume the triangle inequality holds for c:

 c(a,c) ≤ c(a,b) + c(b,c)

à Each character is changed at most once

34

Edit distance
Trace as representation of edit sequences

 A = b a a c a a b c

 B = a b a c b c a c

or using indels

 A = - b a a c a - a b c

 B = a b a - c b c a - c

Edit distance (cost): 5

Division of an optimal trace results in two optimal sub-traces
à dynamic programming can be used

35

Computation of the edit distance

Let Ai = a1...ai and Bj = b1....bj

 Di,j = D(Ai,Bj)

A

B

36

Computation of the edit distance

Three possibilities of ending a trace:

1. am is replaced by bn :
 Dm,n = Dm-1,n-1 + c(am, bn)

2. am is deleted: Dm,n = Dm-1,n + 1

3. bn is inserted: Dm,n = Dm,n-1 + 1

37

Computation of the edit distance

Recurrence relation, if m,n ≥ 1:

à Computation of all Di,j is required, 0 ≤ i ≤

m, 0 ≤ j ≤ n.

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+

+

+

=

−

−

−−

1
,1
),,(

min

1,

,1

1,1

,

nm

nm

nmnm

nm

D
D

bacD
D

Di-1,j-1 Di-1,j

Di,j Di,j-1

+d +1

+1

38

Recurrence relation for the edit
distance
Base cases:
 D0,0 = D(ε, ε) = 0
 D0,j = D(ε, Bj) = j
 Di,0 = D(Ai,ε) = i

Recurrence equation:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+

+

+

=

−

−

−−

1
,1
),(

min

1,

,1

1,1

,

ji

ji

jiji

ji

D
D

bacD
D

39

Order of computation for the edit
distance b1 b2 b3 b4 bn

a1

am

Di-1,j

Di,j

Di-1,j-1

Di,j-1

a2

40

Algorithm for the edit distance
Algorithm edit_distance
Input: two strings A = a1 am and B = b1 ... bn
Output: the matrix D = (Dij)
1 D[0,0] := 0
2 for i := 1 to m do D[i,0] = i
3 for j := 1 to n do D[0,j] = j
4 for i := 1 to m do
5 for j := 1 to n do
6 D[i,j] := min(D[i - 1,j] + 1,
7 D[i,j - 1] + 1,
8 D[i –1, j – 1] + c(ai,bj))

41

Example

a b a c

0 1 2 3 4

b 1

a 2

a 3

c 4

42

Computation of the edit operations
Algorithm edit_operations (i,j)
Input: matrix D (computed)
1 if i = 0 and j = 0 then return
2 if i ≠ 0 and D[i,j] = D[i – 1 , j] + 1
3 then „delete a[i]“
4 edit_operations (i – 1, j)
5 else if j ≠ 0 and D[i,j] = D[i, j – 1] + 1
6 then „insert b[j]“
7 edit_operations (i, j – 1)
8 else

 /* D[i,j] = D[i – 1, j – 1] + c(a[i], b[j]) */
9 „replace a[i] by b[j] “
10 edit_operations (i – 1, j – 1)

Initial call: edit_operations(m,n)

43

Trace graph of the edit operations

0

1

2

3

4

1 2 3 4

1 1 2 3

1 2 2 3

2 2 2 3

3 3 3 2

B = a b a c

A =

b

a

a

c

44

Sub-graph of the edit operations
Trace graph: Overview of all possible traces for the

transformation
of A into B, directed edges from vertex (i, j) to (i + 1, j),

(i, j + 1) and
(i + 1, j + 1).
Weights of the edges represent the edit costs.

Costs are monotonic increasing along an optimal path.

Each path with monotonic increasing cost from the

upper left corner
to the lower right corner represents an optimal trace.

45

Approximate string matching
Given: two strings P = p1p2 ... pm (pattern) and

 T = t1t2 ... tn (text)

Wanted: an interval [j´, j], 1 ≤ j´ ≤ j ≤ n, such that the substring

 Tj´ , j = tj´ ... tj of T is the one with the greatest similarity to
 pattern P, i.e. for all other intervals [k´ , k], 1 ≤ k´ ≤ k ≤ n:

 D(P,Tj´, j) ≤ D(P, Tk´, k)

T

P

j

46

Approximate string matching

Naïve approach:

 for all 1 ≤ j´ ≤ j ≤ n do
 compute D(P,Tj´, j)
 choose minimum

47

Approximate string matching

Consider a related problem:
 T

j

i
E(i, j)

P

For each text position j and each pattern position i
compute the edit distance of the substring Tj´,j of T
ending at j which has the greatest similarity to Pi.

48

Approximate string matching
Method:
for all 1 ≤ j ≤ n do

 compute j´ such that D(P,Tj´, j) is minimal

For 1 ≤ i ≤ m and 0 ≤ j ≤ n let:

Optimal trace:

 Pi = b a a c a a b c

 Tj´, j = b a c b c a c

),(min ,1´1, jjijjji TPDE ʹ′+≤ʹ′≤
=

49

Approximate string matching
Recurrence relation:

Remark:
j´ can be completely different for Ei-1, j-1, Ei – 1,j

and Ei, j – 1.
A subtrace of an optimal trace is an optimal

subtrace.

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+

+

+

=

−

−

−−

1
,1
),,(

min

1,

,1

1,1

,

ji

ji

jiji

ji

E
E

tpcE
E

50

Approximate string matching
Base cases:

 E0,0 = E(ε, ε) = 0
 Ei,0 = E(Pj ,ε) = i

but
 E0,j = E(ε ,Tj) = 0

Observation:
The optimal edit sequence from P to Tj´, j does not start
with an insertion of tj´ .

51

Approximate string matching

0

1

2

3

4

0 0 0 0

0 1 1 1

1 1 2 1

2 1 1 2

3 2 1 2

0

0

1

2

3

0 0 0 0

1 1 1 1

0 1 2 2

1 1 1 2

2 2 1 2

5 4 3 2 2 3 3 2 2 1

T = a b b d a d c b c
P

=

a

d

b

b

c

Dependency graph

52

Approximate string matching
Theorem

If there is a path from E0, j´- 1 to Ei, j in the

dependency graph, then
Tj´, j is a substring of T ending in j with the

greatest similarity to Pi
and

 D(Pi, Tj´,j) = Ei, j

Back To Spelling
� Remember graffe…
� We can compute the score/distance

between graffe and assorted candidates
� MS Word gives
◦  giraffe
◦  gaffe
◦  giraffes
◦  graft

1/20/15 53

How does it do that?

1/20/15 54

DP Search
�  In the context of language processing

(and signal processing) this kind of
algorithm is often referred to as a DP
search
◦ Min edit distance
◦ Viterbi and Forward algorithms
◦ CKY and Earley
◦ MT decoding

1/20/15 55

Word Prediction
� Guess the next word...
◦  So I notice three guys standing on the ???

What are some of the knowledge sources
you used to come up with those
predictions?

1/20/15 56

Word Prediction
� We can formalize this task using what are

called N-gram models
◦ N-grams are token sequences of length N
�  -gram means “written”

� Our earlier example contains the following
2-grams (aka bigrams)
◦  (So I), (I notice), (notice three), (three guys),

(guys standing), (standing on), (on the)
� Given knowledge of counts of N-grams such

as these, we can guess likely next words in
a sequence.

1/20/15 57

N-Gram Models
� More formally, we can use knowledge

of the counts of N-grams to assess the
conditional probability of candidate
words as the next word in a sequence.

� Or, we can use them to assess the
probability of an entire sequence of
words.
◦  Pretty much the same thing as we’ll see...

1/20/15 58

Applications
�  It turns out that being able to predict the

next word (or any linguistic unit) in a
sequence is an extremely useful thing to be
able to do.

�  As we’ll see, it lies at the core of the
following applications
◦  Automatic speech recognition
◦  Handwriting and character recognition
◦  Spelling correction
◦  Machine translation
◦  And many more

1/20/15 59

Counting
� Simple counting lies at the core of any

probabilistic approach. So let’s first
take a look at what we’re counting.
◦ He stepped out into the hall, was

delighted to encounter a water brother.
�  13 tokens, 15 if we include “,” and “.” as

separate tokens.
�  Assuming we include the comma and period as

tokens, how many bigrams are there?

1/20/15 60

Counting
�  Not always that simple
◦  I do uh main- mainly business data processing

�  Spoken language poses various challenges.
◦  Should we count “uh” and other fillers as tokens?
◦  What about the repetition of “mainly”? Should such

do-overs count twice or just once?
◦  The answers depend on the application.

�  If we’re focusing on something like ASR to support indexing for
search, then “uh” isn’t helpful (it’s not likely to occur as a query).

�  But filled pauses are very useful in dialog management, so we
might want them there

�  Tokenization of text raises the same kinds of issues

1/20/15 61

Counting: Types and Tokens
� How about
◦ They picnicked by the pool, then lay back

on the grass and looked at the stars.
�  18 tokens (again counting punctuation)

� But we might also note that “the” is
used 3 times, so there are only 16
unique types (as opposed to tokens).

�  In going forward, we’ll have occasion
to focus on counting both types and
tokens of both words and N-grams.

1/20/15 62

Counting: Corpora
� What happens when we look at large

bodies of text instead of single utterances

� Google Web Crawl
◦  Crawl of 1,024,908,267,229 English tokens in Web text
◦  13,588,391 wordform types

�  That seems like a lot of types... After all, even large dictionaries of
English have only around 500k types. Why so many here?

• Numbers
• Misspellings
• Names
• Acronyms
• etc

1/20/15 63

Language Modeling
� Now that we know how to count, back

to word prediction
� We can model the word prediction

task as the ability to assess the
conditional probability of a word given
the previous words in the sequence
◦  P(wn|w1,w2…wn-1)

� We’ll call a statistical model that can
assess this a Language Model

1/20/15 64

Language Modeling
� How might we go about calculating such

a conditional probability?
◦  One way is to use the definition of

conditional probabilities and look for counts.
So to get
◦  P(the | its water is so transparent that)

�  By definition, that is:
P(its water is so transparent that the)
 P(its water is so transparent that)
We can get each of those from counts in a

large corpus.

1/20/15 65

Very Easy Estimate
�  How to estimate?
◦  P(the | its water is so transparent that)

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
 Count(its water is so transparent that)

1/20/15 66

Very Easy Estimate
� According to Google those counts are

12000 and 19000 so the conditional
probability of interest is...

◦  P(the | its water is so transparent that) = 0.63

1/20/15 67

Language Modeling
� Unfortunately, for most sequences and for

most text collections we won’t get good
estimates from this method.
◦ What we’re likely to get is 0. Or worse 0/0.

� Clearly, we’ll have to be a little more clever.
◦  Let’s first use the chain rule of probability
◦ And then apply a particularly useful

independence assumption

1/20/15

The Chain Rule
�  Recall the definition of conditional probabilities

�  Rewriting:

�  For sequences...
◦  P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

�  In general
◦  P(x1,x2,x3,…xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…

xn-1)

)(
)^()|(

BP
BAPBAP =

)()|()^(BPBAPBAP =

1/20/15 69

The Chain Rule

P(its water was so transparent)=
P(its)*
 P(water|its)*
 P(was|its water)*
 P(so|its water was)*
 P(transparent|its water was so)

1/20/15 70

Unfortunately

� There are still a lot of possible sequences in
there

�  In general, we’ll never be able to get
enough data to compute the statistics for
those longer prefixes
◦  Same problem we had for the strings

themselves

1/20/15

Independence Assumption
� Make the simplifying assumption
◦  P(lizard|

the,other,day,I,was,walking,along,and,saw
,a) = P(lizard|a)

� Or maybe
◦  P(lizard|

the,other,day,I,was,walking,along,and,saw
,a) = P(lizard|saw,a)

� That is, the probability in question is
to some degree independent of its
earlier history.

1/20/15 72

So for each component in the product replace with the
approximation (assuming a prefix of N - 1)

 Bigram version

€

P(wn |w1
n−1) ≈ P(wn |wn−N +1

n−1)

Markov Assumption

€

P(wn |w1
n−1) ≈ P(wn |wn−1)

1/20/15 73

Estimating Bigram Probabilities

� The Maximum Likelihood Estimate (MLE)

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

1/20/15 74

An Example
�  <s> I am Sam </s>
�  <s> Sam I am </s>
�  <s> I do not like green eggs and ham </s>

1/20/15 75

Maximum Likelihood Estimates
�  The maximum likelihood estimate of some parameter of

a model M from a training set T
◦  Is the estimate that maximizes the likelihood of the training set T

given the model M

�  Suppose the word “Chinese” occurs 400 times in a
corpus of a million words (Brown corpus)

�  What is the probability that a random word from some
other text from the same distribution will be “Chinese”

�  MLE estimate is 400/1000000 = .004
◦  This may be a bad estimate for some other corpus

�  But it is the estimate that makes it most likely that
“Chinese” will occur 400 times in a million word corpus.

1/20/15 76

Berkeley Restaurant Project
Sentences

�  can you tell me about any good cantonese
restaurants close by

�  mid priced thai food is what i’m looking for
�  tell me about chez panisse
�  can you give me a listing of the kinds of food that

are available
�  i’m looking for a good place to eat breakfast
�  when is caffe venezia open during the day

1/20/15 77

Bigram Counts
� Out of 9222 sentences
◦  Eg. “I want” occurred 827 times

1/20/15 78

Bigram Probabilities
� Divide bigram counts by prefix

unigram counts to get probabilities.

1/20/15 79

Bigram Estimates of Sentence
Probabilities

� P(<s> I want english food </s>) =
 P(i|<s>)*

 P(want|I)*
 P(english|want)*
 P(food|english)*
 P(</s>|food)*
 =.000031

1/20/15 80

Kinds of Knowledge

�  P(english|want) = .0011
�  P(chinese|want) = .0065
�  P(to|want) = .66
�  P(eat | to) = .28
�  P(food | to) = 0
�  P(want | spend) = 0
�  P (i | <s>) = .25

§  As crude as they are, N-gram probabilities capture a
range of interesting facts about language.

World knowledge

Syntax

Discourse

1/20/15 81

Shannon’s Method
� Assigning probabilities to sentences is

all well and good, but it’s not terribly
illuminating . A more entertaining task
is to turn the model around and use it
to generate random sentences that
are like the sentences from which the
model was derived.

� Generally attributed to
 Claude Shannon.

1/20/15 82

Shannon’s Method
�  Sample a random bigram (<s>, w) according to the

probability distribution over bigrams
�  Now sample a new random bigram (w, x) according to

its probability
◦  Where the prefix w matches the suffix of the first.

�  And so on until we randomly choose a (y, </s>)
�  Then string the words together
�  <s> I
 I want

 want to
 to eat
 eat Chinese

 Chinese food
 food </s>

1/20/15 83

Shakespeare

1/20/15 84

Shakespeare as a Corpus
�  N=884,647 tokens, V=29,066
�  Shakespeare produced 300,000 bigram

types out of V2= 844 million possible
bigrams...
◦  So, 99.96% of the possible bigrams were never

seen (have zero entries in the table)
◦  This is the biggest problem in language

modeling; we’ll come back to it.
�  Quadrigrams are worse: What's coming

out looks like Shakespeare because it is
Shakespeare

1/20/15 85

The Wall Street Journal is Not
Shakespeare

1/20/15 86

Evaluating N-Gram Models
� Best evaluation for a language model
◦ Put model A into an application
�  For example, a speech recognizer
◦ Evaluate the performance of the

application with model A
◦ Put model B into the application and

evaluate
◦ Compare performance of the

application with the two models
◦ Extrinsic evaluation

1/20/15 87

Difficulty of extrinsic (in-vivo)
evaluation of N-gram models
�  Extrinsic evaluation
◦  This is really time-consuming
◦  Can take days to run an experiment

�  So
◦  As a temporary solution, in order to run experiments
◦  To evaluate N-grams we often use an intrinsic

evaluation, an approximation called perplexity
◦  But perplexity is a poor approximation unless the test

data looks just like the training data
◦  So is generally only useful in pilot experiments

(generally is not sufficient to publish)
◦  But is helpful to think about.

1/20/15 88

Model Evaluation
�  How do we know if our models are any good?
◦  And in particular, how do we know if one model is

better than another.
�  Well Shannon’s game gives us an intuition.
◦  The generated texts from the higher order models

sure look better.
�  That is, they sound more like the text the model was

obtained from.
◦  The generated texts from the WSJ and Shakespeare

models look different
�  That is, they look like they’re based on different underlying

models.

�  But what does that mean? Can we make that
notion operational?

1/20/15 89

Evaluation
�  Standard method
◦  Train parameters of our model on a training set.
◦  Look at the models performance on some new data

�  This is exactly what happens in the real world; we want to
know how our model performs on data we haven’t seen

◦  So use a test set. A dataset which is different than
our training set, but is drawn from the same source
◦  Then we need an evaluation metric to tell us how

well our model is doing on the test set.
�  One such metric is perplexity

1/20/15 90

But First
� But once we start looking at test data,

we’ll run into words that we haven’t
seen before (pretty much regardless
of how much training data you have.

�  With an Open Vocabulary task
◦  Create an unknown word token <UNK>
◦  Training of <UNK> probabilities

�  Create a fixed lexicon L, of size V
�  From a dictionary or
�  A subset of terms from the training set

�  At text normalization phase, any training word not in L changed
to <UNK>

�  Now we count that like a normal word
◦  At test time

�  Use UNK counts for any word not in training

1/20/15 91

Perplexity
� The intuition behind perplexity as a

measure is the notion of surprise.
◦ How surprised is the language model

when it sees the test set?
�  Where surprise is a measure of...

� Gee, I didn’t see that coming...

�  The more surprised the model is, the lower the
probability it assigned to the test set

�  The higher the probability, the less surprised it
was

1/20/15 92

Perplexity
�  Perplexity is the probability of a

test set (assigned by the
language model), as normalized
by the number of words:

�  Chain rule:

�  For bigrams:

§  Minimizing perplexity is the same as maximizing
probability
§  The best language model is one that best predicts an

unseen test set

1/20/15 93

Lower perplexity means a
better model

� Training 38 million words, test 1.5
million words, WSJ

