The Basics of Edit Distance

COSI | 14 — Computational Linguistics
James Pustejovsky

January 20,2015

Brandeis University

Spelling Correction

» We can detect spelling errors (spell check) by
building an FST-based lexicon and noting any
strings that are rejected.

» But how do I fix “graffe”? That is, how do I
come up with suggested corrections?
> Search through all words in my lexicon
Graft, craft, grail, giraffe, crafted, etc.
- Pick the one that’ s closest to graffe

- But what does “closest” mean?
We need a distance metric.

The simplest one: minimum edit distance
- As in the Unix diff command

Dynamic programming

- Algorithm design technique often used for
optimization problems

- Generally usable for recursive approaches if
the same partial solutions are required more
than once

- Approach: store partial results in a table

- Advantage: improvement of complexity, often
polynomial instead of exponential

Two different approaches

Bottom-up:

+ controlled efficient table management, saves time

+ special optimized order of computation, saves space
- requires extensive recoding of the original program
- possible computation of unnecessary values

Top-down: (Note-pad method)

+ original program changed only marginally or not at all
+ computes only those values that are actually required
- separate table management takes additional time

- table size often not optimal

Edit Distance

» The minimum edit distance between
two strings is the minimum number of
editing operations
> Insertion
> Deletion
> Substitution

» that one would need to transform one
string into the other

1/20/15

Note

» The following discussion has 2 goals

1. Learn the minimum edit distance
computation and algorithm

2. Introduce dynamic programming

1/20/15

Min Edit Example

: inte
delete i
- n t en
substitute nbye _
substitute t by x _ e t en
insertu_, © % €1
substitute n by ¢ e X en
e X e cC

1/20/15

S £ o & & B
t+ ¢+ k- - Bt

O O O
0O 0 B B B O

Minimum Edit Distance
INTE*NTION

*EXECUTION

ds s i s

» If each operation has cost of 1
distance between these is 5

» If substitutions cost 2 (Levenshtein)
distance between these is 8

1/20/15

Min Edit As Search

» That's all well and good but how did we find that
particular (minimum) set of operations for those
two strings?

» We can view edit distance as a search for a path
(a sequence of edits) that gets us from the start
string to the final string
- Initial state is the word we're transforming
- Operators are insert, delete, substitute
- Goal state is the word we're trying to get to

> Path cost is what we're trying to minimize: the number
of edits

1/20/15

Min Edit as Search

intention

Del - Irls \Sub
— | ~

ntention eintention entention

1/20/15 10

Min Edit As Search

» But that generates a huge search space

» Navigating that space in a naive backtracking
fashion would be incredibly wasteful

» Why?

Lots of distinct paths wind up at the
same state. But there is no need to
keep track of the them all. We only
care about the shortest path to each of
those revisited states.

1/20/15 11

1/20/15

Defining Min Edit Distance

» For two strings S; of len n, S, of len m
> distance(i,j) or D(i,))

Is the min edit distance of S,[1../] and S,[1..]]

- That is, the minimum number of edit operations need
to transform the first / characters of S, into the first j
characters of S,

The edit distance of S,, S, is D(n,m)
» We compute D(n,m) by computing D(/,j) for
all i (0 <7< n) and
j(0<j<m)

1/20/15 12

Edit Distance

G H T
D D D
I I I
G H T

T E

S S D
2 2 I
G H

D D

Edit Distance

Minimum Edit Distance Algorithm

e Create Matrix

e Initialize | — length in LH column and
bottom row

e For each cell
o Take the minimum of:

Deletion: +1 from left cell
Insertion: +| from cell below

Substitution: Diagonal +0 if same +2 if different

> Keep track of where you came from

Example

e Minim of:

o |+1 (left rig

o |+] (bottom up)

> 0+0 (diagonal)
e Minimum ofi—

o 0+1 (left right)

T 5

H 4
\G 3

I\\Z

~

R 4__|_______________
——

H 0

H

o 2+| (bottom up)
o |+2 (diagonal)

Answer to Right-Rite

T 5 6.6, 4 5,5, 5 6.2, 4 3,55
| &= e
H 4 553 7| 44,2 3,3,3 4,4,4
| |
G 3 4427 331 Y 222 3.3.3
| I
| 2 331 Y| 202V 133 7.4, 4
1 <
R | 202V T 133 2.4, 4 3,55
<
0 | 2 3 4
" R | T E

In each box XY, Z values are
X: From left: Insert-add one from left box
Y: Diagonal, Compare-0 if same, 2 if different
Z: From below: Delete-add one from lower box

Minimum is highlighted

in red with arrow to source
NOTE: All boxes will have arrows.
| didn’t show them all.

Only one path back to root.

Defining Min Edit Distance

» Base conditions:
- D(i0) = i
- D(0,)) =J

> Recurrence Relation:

D(i-1,j) + 1

> D(/,j)) = min <D(i,j-1) + 1

D(i-1,j-1) + [2; if S,(i) # S,(j)
0; if Sy(i) = S,(j)

1/20/15

Dynamic Programming

« A tabular computation of D(n,m)

» Bottom-up
- We compute D(i,j) for small i,j

- And compute larger D(i,j) based on
previously computed smaller values

1/20/15 18

The Edit Distance Table

N |9

O |8

I /

T |6

N |5

E |4

T |3

N |2

I 1

i 5 6 8
s u (T O

1/20/15

19

N |9
O |8
: ! D(i-1,j) + 1 .
T 6 D(ij) = min JD(i,j-1) +1
N |5 \D(i-l,j-l) + [2; if S;(i) # S,(§) |
c |4 0; if S4(i) = S;0)
T |3
N |2
I 1
2 |3 |4 |5 |6 8
#* X |E |C U |T O

1/20/15

20

10

11

10

10
11
10

10

10

11

10

12
11

10

11

10

10

21

1/20/15

Min Edit Distance

o Note that the result isn’t all that
informative

> For a pair of strings we get back a single
number

The min number of edits to get from here to
there

» That's like a map routing program that
tells you the distance from here to
Denver but doesn’t tell you how to get
there.

1/20/15

Paths

» Keep a back pointer

- Every time we fill a cell add a pointer back
to the cell that was used to create it (the
min cell that lead to it)

- To get the sequence of operations follow
the backpointer from the final cell

1/20/15 23

Backtrace

O | +H|O

DA —H || OO N O Z
) o|l—|o
QOO | H|l—H| | n|o|N| 0| O
ol [\ o
— | O O[O N|O|N|—
—| O
| | AN O NOOIN|O|
N|l—|O) v
1119_|v_/oo_/65H,m

P

| O "
1198_/7¢_7654C
o N
— | |0 |INO| N[O | M| LW
L, L T
QO [OIN| S| < | | N X
_ 1 N « N [
OINO N T M AN | W
O NOIN| T | +

Adding Backtrace to MinEdit

» Base conditions:
o D(j,0) = i
> D(0.)) =7
» Recurrence Relation:
i D(i-1,j) + 1 Case 1
D(i,j-1) + 1 ~ Case 2
D(i-1,-1) + | 1; if Sy(i) # S,(j)
) | 0; if S,(i) = S,(3)

> D(/,)) = min

<

Case 3

[LEFT | caset
ptr(I,J) { DOWN case?
DIAG Case 3

Complexity

e TIme:

O(nm)
» Space:

O(nm)
» Backtrace

O(n+m)

1/20/15

26

Alignments

» An alignment is a 1 to 1 pairing of each
element in a sequence with a
corresponding element in the other
sequence or with a gap...

H— H
H— H
©—0O
22— 2

E
|
E

n || — =
0w X — H
H- QQ — *
n Cc— =2

1
|
*

d

~AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

1/20/15

27

Weighted Edit Distance

« Why would we want to add weights to the
minimum edit distance computation?

: S 4 : ; nn“
caosl.ov-'r]. - E . - - n n n-' EEEEE
-

ﬁl—n'

1/20/15

28

Confusion matrix

f X (incorrect) for Y (correct)

Y (correct)

10N 0
1

= Substituti

sublX, Y]

n

m

k

j

QOO OO OO MNMOCOMNOD T OO~ DO OCOoODOOo O

VN O = NN X CnNOINOTCOOMO0DDO0O0CS DO CT o
y—t — - o

COm O C OO —~OQQOMNNCOCOCC N OOC O O

1874121220402101005”200000

COMNMNIOCO OO0 MO FCOONOOOCCOo

90105000700030900400001050
o <+ vt o

9
I
6
4 12
13 21
11

OO NN TODONMOC DN O
— — N v

NNV OOAWVM T NnNONOD O WwWe AAND w—
— — (g ne i o |

35
2
5 39 40
43 30 22
12

1
0
14

CHH MmO OC O OXN OO0 T OO~
— o vt i
CONCCOMNMOODOCOoOOoCOOCOOoOOoOIo oo CcCeCe
COQmC O O ONYRTOOITN VOO C—D

— — - —

60103022902200050115310060
- N < - <t

—

- Y

O - NSO~ NOCT T TANOCONODO OO -=COQ
COOC QO ~COCOC o N O~~~ 00

000009000000301%20200&00050
—d [« =] — —

—

2105020000566”000815002070

SN ANCACO S ~ITANOCOVOANTVNOnNnOOCOCO

NO AN = C OO —~OOO0ONOOO O~ OWnNCo
— <t — b~ —

- —

o
<t
[}
—

(]
—
o

00618041301212100013002000
Mm m N - (o]

S D OUT O WO~ M B DO AT ® = D> R X NN

29

1/20/15

1/20/15

Problem: similarity of strings

Edit distance

For two given A and B, compute, as efficiently as
possible, the edit distance and 2 minimal
sequence of edit operations which transforms A

into B.

Problem: similarity of strings

Approximate string matching

For a given text T, a pattern P, and a distance d,
find all substrings P" in T with D(PP’) < d

Sequence alignment

Find optimal alignments of DNA sequences

GAGCA- CTTGGATTCTCGG
.- -CACGTGG- - - - - A

Edit distance

Given: two strings A = a,a,...a, and B=bb,..b,

m

Woanted: minimal cost D(A,B) for a sequence of
edit operations
to transform A into B.

Edit operations:

|. Replace one character in A by a character from B
2. Delete one character from A
3. Insert one character from B

Edit distance

Cost model:

1 1fa=b
0 ifa=>b

a=¢&, b=¢g possible

c(a,b) = {

We assume the triangle inequality holds for c:
c(a,c) = c(ab) + c(b,c)

—> Each character is changed at most once

Edit distance

Trace as representation of edit sequences

A= baacaabc

YAV

B= abacbcac
or using indels
A= - baaca -abc

B= aba- cbca- c

Edit distance (cost): 5

Division of an optimal trace results in two optimal sub-traces
—> dynamic programming can be used

Computation of the edit distance

Let A;=a,...a; and B;=b,...b,

D, = D(A,B)
|

Computation of the edit distance

Three possibilities of ending a trace:

|.a_ is replaced by b, :

Dm,n = Dm-I,n-I T C(am’ bn)
2.q,,is deleted:D, , =D, .+ |
3.b,isinserted:D, =D, , + |

Computation of the edit distance

Recurrence relation, if mn = |:

D =min,

(D

m-1,n-1

D

m-1,n

D

m,n—1

+ c(a ,b),

+

+

1,
1

fall D is required,0 < i <

Recurrence relation for the edit
distance
Base cases:

Dyo =D(g¢) =0

Dy; =D(¢B) =

D,, =D(Ae) =i

(D + c(a,b,)

i-1,7-1

Y

D =min
RecuFrrence 1
+

D . 4. 1,
Ie)lquatlon:

Order of computation for the edit
disfapcg ,, . b

Algorithm for the edit distance

Algorithm edit_distance

Input: two strings A=aq,...a_and B=Db, .. b,
Output: the matrix D = (D)

| D[0,0] :=0

2fori:=1 tomdo D[i,0] =i
3forj:=1tondo D[0,] =
4fori:=1tomdo

5 forj:=1tondo

6 D[ij] := min(D[i - I,] + I,

7/ D[ij- 1]+ 1,

8 D[i—I,j— 1] + c(a,b))

Computation of the edit operations
Algorithm edit_operations (i)
Input: matrix D (computed)
| ifi=0andj=0 then return
ifi=0and D[ij]=D[i—I|,j] + |
then ,,delete qli]"
edit_operations (i — 1,))
else if j = 0 and DJ[ij] = D[i,j— I] + |
then ,jinsert b[j]"
edit_operations (i,j— I)

ONONULT A WD

else

I*D[ij] =D[i— 1,j— 1] + c(a[i], b[j]) */
9 ,replace afi] by b[j]
10 edit_operations (i— |,j— 1)

Initial call: edit_operations(m,n)

Trace graph of the edit operations

B = a b a C
A 0 < » 2 » 3 » 4
Il
b I I I 2 3
d 2 I 2 2 3
a 3 2 2 2 3

Sub-graph of the edit operations

Trace graph: Overview of all possible traces for the
transformation

of A into B, directed edges from vertex (i, j) to (i + 1,)),
(i,j + 1) and

i+ 1,j+1).

Weights of the edges represent the edit costs.

Costs are monotonic increasing along an optimal path.

Each path with monotonic increasing cost from the
upper left corner

to the lower right corner represents an optimal trace.

Approximate string matching

Given: two strings P = p,p, ... p,, (pattern) and
T=tt,..t (text)

Wanted: an interval [j,j], | =j" =j = n, such that the substring

T ; =t ..t of Tis the one with the greatest similarity to

pattern P, i.e. for all other intervals [k", k], | =k’ <k = n:
D(ET;.)) = DTy)

J

Approximate string matching

Naive approach:

forall | <j'<j<ndo
compute D(FT:.)
choose minimum

Approximate string matching

Consider a related problem:
J

E(i,)

For each text position j and each pattern position i
compute the edit distance of the substring T;.. of T
ending at j which has the greatest similarity to P.

Approximate string matching

Method:
forall | <j <ndo
compute j” such that D(FT;) is minimal

For | =i =m and O<j =n let

E_ = min D(P,T,)

L < j+l

Optimal trace:

Approximate string matching

Recurrence relation:

rE'i—l,j—l + C(piﬁtj);
E =mmy E +1, 1
E +1

i,j-1

Remark:

j” can be completely different for £, . |, E;
and E;;_,.

A subtrace of an optimal trace is an optimal
subtrace.

J

Approximate string matching

Base cases:

Eoop = E(5e) =0

Eo = E(P,e)=i
but

EOJ = E(s,Tj) =0
Observation:

The optimal edit sequence from P to T.. . does not start
with an insertion of ¢ .

Approximate string matching
Dependency graph

T = a b b d a d C b

0 0 0 0 0 0 0 0 0

I 0 — | I " 0 — | I I
A 4 A 4 A 4 A 4 A 4
2 I I " 2 I I 0 — | " 2
A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4
3 2 I I " 2 2 I I I >

Approximate string matching

If there is a path from E; ;. | to E; ; in the
dependency graph, then

T.. . is a substring of T ending in j with the

greatest similarity to P,
and

D(P, T”) = Ei,j

Back To Spelling

* Remember graffe...

* We can compute the score/distance
between graffe and assorted candidates

e MS Word gives
> giraffe How does it do that?

o gaffe
o giraffes
o graft

1/20/15

53

DP Search

» In the context of language processing
(and signal processing) this kind of
algorithm is often referred to as a DP
search
> Min edit distance
> Viterbi and Forward algorithms
> CKY and Earley
> MT decoding

1/20/15

94

Word Prediction

» Guess the next word...
> 50 I notice three guys standing on the ???

What are some of the knowledge sources
you used to come up with those
predictions?

1/20/15

95

Word Prediction

» We can formalize this task using what are
called models
- N-grams are token sequences of length N

-gram means “written”

» Our earlier example contains the following
2-grams (aka bigrams)
> (S0 1), (I notice), (notice three), (three guys),

(guys standing), (standing on), (on the)

» Given knowledge of counts of N-grams such
as these, we can guess likely next words in
a seqguence.

1/20/15 56

N-Gram Models

» More formally, we can use knowledge
of the counts of N-grams to assess the
conditional probability of candidate
words as the next word in a sequence.

e Or, we can use them to assess the
probability of an entire sequence of
words.
> Pretty much the same thing as we'll see...

1/20/15 57

Applications

o It turns out that being able to predict the
next word (or any linguistic unit) in a
sequence is an extremely useful thing to be
able to do.

« As we’ |l see, it lies at the core of the
following applications
- Automatic speech recognition
- Handwriting and character recognition
> Spelling correction
> Machine translation
> And many more

1/20/15

58

Counting

» Simple counting lies at the core of any
probabilistic approach. So let’s first
take a look at what we’re counting.

o

6« 7 €« 7

13 tokens, 15 if we include “,” and “." as

separate tokens.
Assuming we include the comma and period as

tokens, how many bigrams are there?

1/20/15 59

Counting

* Not always that simple

(©)

» Spoken language poses various challenges.
- Should we count “uh” and other fillers as tokens?

- What about the repetition of “mainly” ? Should such
do-overs count twice or just once?
> The answers depend on the application.

If we’ re focusing on something like ASR to support indexing for
search, then “uh” isn’ t helpful (it’ s not likely to occur as a query).

But filled pauses are very useful in dialog management, so we
might want them there

» Tokenization of text raises the same kinds of issues

1/20/15 60

Counting: Types and Tokens

» How about

18 tokens (again counting punctuation)

» But we might also note that “the” is
used 3 times, so there are only 16
unique types (as opposed to tokens).

» In going forward, we’ll have occasion
to focus on counting both types and
tokens of both words and N-grams.

1/20/15

61

Counting: Corpora

» What happens when we look at large
bodies of text instead of single utterances

» Google Web Crawl

> Crawl of 1,024,908,267,229 English tokens in Web text

- 13,588,391 wordform types

That seems like a lot of types... After all, even large dictionaries of
English have only around 500k types. Why so many here?

1/20/15

62

Language Modeling

 Now that we know how to count, back
to word prediction

» We can model the word prediction
task as the ability to assess the
conditional probability of a word given
the previous words in the sequence
> P(Wq[wy,wy..wi)

» We'll call a statistical model that can
assess this a

1/20/15 63

Language Modeling

» How might we go about calculating such
a conditional probability?

o

- P(the | its water is so transparent that)
» By definition, that is:
P(its water is so transparent that the)

P(its water is so transparent that)

We can get each of those from counts in a
large corpus.

1/20/15

64

Very Easy Estimate

» How to estimate?
> P(the | its water is so transparent that)

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

1/20/15 65

Very Easy Estimate

» According to Google those counts are
12000 and 19000 so the conditional
probability of interest is...

o P(the | its water is so transparent that) = 0.63

1/20/15 66

Language Modeling

» Unfortunately, for most sequences and for
most text collections we won't get good
estimates from this method.

- What we're likely to get is 0. Or worse 0/0.

» Clearly, we'll have to be a little more clever.
> Let’s first use the chain rule of probability

- And then apply a particularly useful
independence assumption

1/20/15

67

The Chain Rule

» Recall the definition of conditional probabilities

P(A" B)
» Rewriting: P(4] B) = P(B)

P(A"B)=P(A|B)P(B)
» For sequences...
- P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
 In general

0 P(xi,xz,x—j,...xn) = P(X{)P(X,|X{)P(X3|X{,%5)...P(X | ;...
Xn-l

1/20/15

The Chain Rule

P(wY) = P(wi)P(walwi)P(wslwi)..

HP(WHWT_I)
k=1

P(its water was so transparent)=
P(its)*
P(water|its)*
P(was|its water)*
P(so|its water was)*
P(transparent|its water was so)

1/20/15

(W,, ‘W” |)

69

Unfortunately

» There are still a lot of possible sequences in
there

» In general, we’ Il never be able to get
enough data to compute the statistics for
those longer prefixes

- Same problem we had for the strings
themselves

1/20/15 70

Independence Assumption

» Make the simplifying assumption
> P(lizard|
the,other,day,I,was,walking,along,and,saw
,a) = P(Iizarcf |a)
» Or maybe
> P(lizard|
the,other,day,I,was,walking,along,and,saw
,a) = P(lizard|saw,a)
» That is, the probability in question is
to some degree independent of its
earlier history.

1/20/15

Markov Assumption

So for each component in the product replace with the
approximation (assuming a prefix of N - 1)

P(wn lw™) = P(wa lW"™}, |

Bigram version

Pw, Iw/™ =~ Pw, lw)

1/20/15

72

Estimating Bigram Probabilities

» The Maximum Likelihood Estimate (MLE)

count(w,_,,w.
Plw, lw,_)= (Wips W)

count(w,_,)

1/20/15

73

An Example

e <s>1am Sam </s>
e <s>SamIam </s>
« <s> [do not like green eggs and ham </s>

P(I|<s>):%:.67 P(Sam|<s>):%:.33 Plam|I)=:

P(</s>|Sam)=%=0.5 P(Sam|am)=3

[w—
|

N

N

—

Q,

@]

i

R

|
L= LYo
|

)

()9

1/20/15 74

Maximum Likelihood Estimates

» The maximum likelihood estimate of some parameter of
a model M from a training set T

- Is the estimate that maximizes the likelihood of the training set T
given the model M

» Suppose the word “Chinese” occurs 400 times in a
corpus of a million words (Brown corpus)

» What is the probability that a random word from some
other text from the same distribution will be “Chinese”

o MLE estimate is 400/1000000 = .004

> This may be a bad estimate for some other corpus

» But it is the estimate that makes it most likely that
“Chinese” will occur 400 times in a million word corpus.

1/20/15 75

Berkeley Restaurant Project
Sentences

e can you tell me about any good cantonese
restaurants close by

o mid priced thai food is what i’ m looking for
o tell me about chez panisse

e can you give me a listing of the kinds of food that
are available

« i"m looking for a good place to eat breakfast
» when is caffe venezia open during the day

1/20/15 76

Bigram Counts

o Out of 9222 sentences

- Eg. “I want” occurred 827 times
1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

1/20/15

77

Bigram Probabilities

» Divide bigram counts by prefix

lllﬂ:ﬂl‘ﬂm ral o9 | IIALA LA AAL “MAIA‘k:I:L:AA

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food | lunch | spend

1 0.002 0.33 |0 0.0036 | O 0 0 0.00079
want 0.0022 | 0O 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | O 0.0017 | 0.28 0.00083 | O 0.0025 | 0.087
eat 0 0 0.00271 0 0.021 0.002710.056 |0
chinese || 0.0063 | 0 0 0 0 0.52 0.0063 | 0
food 0.014 0 0.014 |0 0.00092 | 0.0037 | 0 0
lunch || 0.0059 |0 0 0 0 0.0029 | O 0
spend || 0.0036 | O 0.0036 | O 0 0 0 0

1/20/15

78

Bigram Estimates of Sentence
Probabilities

» P(<s> I want english food </s>) =
P(i|]<s>)*
P(want|I)*
P(english|want)*
P(food|english)*
P(</s>|food)*
=.000031

1/20/15

79

Y |

nowl g
4 As cru e as t ey are, I/$ -gram pro ? ﬁles capture a

range of interesting facts about language.

/
/ o/
o fsloieisinisind sinisia

P(english|want) = .0011
P(chinese|want) = .0065

P(to|want) = .66

P(eat | to) = .28
P(food | to) = 0

P(want | spend) =0

| P (i | <s>) = .25

1/20/15

80

Shannon’s Method

e Assigning probabilities to sentences is
all well and good, but it's not terribly
illuminating . A more entertaining task
is to turn the model around and use it
to generate random sentences that

are the sentences from which the
model was derived.

e Generally attributed to
Claude Shannon.

1/20/15 81

Shannon’s Method

Sample a random bigram (<s>, w) according to the
probability distribution over bigrams

Now sample a new random bigram (w, x) according to
its probability
- Where the prefix w matches the suffix of the first.

And so on until we randomly choose a (y, </s>)

Then string the words together
<s>1

I want

want to

to eat
eat Chinese

Chinese food
food </s>

1/20/15

82

Shakespeare

Unigram

e To him swallowed confess hear both. Which. Of save on trail for are ay device
and rote life have

e Every enter now severally so, let

e Hill he late speaks; or! a more to leg less first you enter

e Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near;
vile like

Bigram

e What means, sir. I confess she? then all sorts, he 1s trim, captain.

eWhy dost stand forth thy canopy, forsooth; he 1s this palpable hit the King Henry.
Live king. Follow.

eWhat we, hath got so she that I rest and sent to scold and nature bankrupt, nor the
first gentleman?

eEnter Menenius, if it so many good direction found’st thou art a strong upon com-
mand of fear not a liberal largess given away, Falstaff! Exeunt

Trigram

e Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.

e This shall forbid it should be branded, if renown made it empty.

e Indeed the duke; and had a very good friend.

e Fly, and will rid me these news of price. Therefore the sadness of parting, as they
say, 'tis done.

Quadrigram

e King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the
watch. A great banquet serv’d in;

e Will you not tell me who I am?

e It cannot be but so.

e Indeed the short and the long. Marry, “tis a noble Lepidus.

1/20/15

83

Shakespeare as a Corpus

« N=884,647 tokens, V=29,066

» Shakespeare produced 300,000 bigram
types out of V2= 844 million possible
bigrams...

> 50, 99.96% of the possible bigrams were never
seen (have zero entries in the table)

> This is the biggest problem in language
modeling; we’ Il come back to it.

e Quadrigrams are worse: What's coming
out looks like Shakespeare because it is
Shakespeare

1/20/15

84

The Wall Street Journal is Not
Shakespeare

unigram: Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

bigram: Last December through the way to preserve the Hudson corporation
N. B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living on
information such as more frequently fishing to keep her

frigram: They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions

1/20/15

85

Evaluating N-Gram Models

» Best evaluation for a language model

> Put model A into an application
For example, a speech recognizer

- Evaluate the performance of the
application with model A

> Put model B into the application and
evaluate

- Compare performance of the
application with the two models

- Extrinsic evaluation

1/20/15 86

Difficulty of extrinsic (in-vivo)
evaluation of N-gram models

 Extrinsic evaluation
> This is really time-consuming
> Can take days to run an experiment

e SO

> As a temporary solution, in order to run experiments

- To evaluate N-grams we often use an intrinsic
evaluation, an approximation called perplexity

> But perplexity is a poor approximation unless the test
data looks just like the training data

> S0 is generally only useful in pilot experiments
(generally is not sufficient to publish)

- But is helpful to think about.

1/20/15 87

Model Evaluation

» How do we know if our models are any good?

> And in particular, how do we know if one model is
better than another.

« Well Shannon’ s game gives us an intuition.

> The generated texts from the higher order models

sure look better.
That is, they sound more like the text the model was
obtained from.

> The generated texts from the WSJ and Shakespeare

models look different

That is, they look like they’ re based on different underlying
models.

o But what does that mean? Can we make that
notion operational?

1/20/15 88

Evaluation

Standard method

> Train parameters of our model on a training set.

- Look at the models performance on some new data

This is exactly what happens in the real world; we want to
know how our model performs on data we haven’t seen

> S0 use a test set. A dataset which is different than
our training set, but is drawn from the same source

- Then we need an evaluation metric to tell us how
well our model is doing on the test set.
One such metric is perplexity

1/20/15 89

But First

» But once we start looking at test data,
we’ |l run into words that we haven't
seen before (pretty much regardless
of how much training data you have.

« With an Open Voocabulary task
> Create an unknown word token <UNK>

> Training of <UNK> probabilities

Create a fixed lexicon L, of size V
- From a dictionary or
- A subset of terms from the training set

At text normalization phase, any training word not in L changed
to <UNK>

Now we count that like a normal word

o At test time
Use UNK counts for any word not in training

1/20/15 90

Perplexity

» The intuition behind perplexity as a
measure is the notion of surprise.

- How surprised is the language model
when it sees the test set?

Where surprise is @ measure of...

- Geg, I didn’ t see that coming...

The more surprised the model is, the lower the
probability it assigned to the test set

The higher the probability, the less surprised it
Was

1/20/15 91

Perplexity
 Perplexity is the probability of a FPP(W) = P(wiws ... wy) ¥
test set (assigned by the . 1 \
language model), as normalized \ 2o
by the number of words:

N
e Chain rule: rrw) =

Wiwa ... WN

AY].
\ 1P (wilwy ... wi—1)

PP(W) = ?

» For bigrams: J

N

1
P(W’,‘ ‘W’,‘_l)

i=1

= Minimizing perplexity is the same as maximizing
probability

* The best language model is one that best predicts an
unseen test set

1/20/15 92

Lower perplexity means a
better model

» Training 38 million words, test 1.5
million words, WSJ

N-gram Order || Unigram | Bigram | Trigram

Perplexity 962 170 109

1/20/15

