Finite State Transducers

COSI | 14 — Computational Linguistics
James Pustejovsky

January 16,2015

Brandeis University

How to do Linguistics

ENGINEERING:

OUR BIG PROBLEM
IS HEAT DISSIPATION

HAVE YOU TRIED
LOGARITHMS ?

%

{ug SECONDS|

My

HOBBy:

SITTING DOWN WITH GRAD STUDENTS AND TIMING
HOW LONG |IT TAKES THEM TO FIGURE QUT THAT
TM NOT ACTUALLY AN EXPERT IN THEIR FIELD,

[LiNGUISTICS:

AH, SO DOES THIS FINNO -
UGRC FAMILY INCLUDE,
SAY, KLINGON?

\
O

SOCIOLOGY:

{63 SECONDS

YEAH, MY LATEST WORK
IS ON RANKING PECFLE
FROM BEST TO WORST,

i

{4 MINUTES]

l

UTERARY CRTICISM:

23

YOU SEE, THE DECONSTRUCTION
1S INEXTRICABLE FROM NOT ONLY

THE TEXT, BUT
ALSO THE SELF.

[EGHT PAPERS AND
TWO BOOKS AND THEY

HAVEN'T CAUGHT ON.

What is a Finite State Transducer?

* A finite state machine with two tapes: an input
tape and an output tape.

* This contrasts with an ordinary finite state
automaton (or finite state acceptor), which has a
single tape.

* But...

* How do FSAs and FSTs fit into the larger
computational landscape?

Theory of Computation: A
Historical Perspective

1930s

 Alan Turing studies Turing machines
« Decidability
 Halting problem

1940-1950s

 “Finite automata” machines studied

« Noam Chomsky proposes the
“Chomsky Hierarchy” for formal
languages

1969

Cook introduces “intractable” problems
or “NP-Hard” problems

1970-

Modern computer science: compilers,
computational & complexity theory evolve

Languages & Grammars

An alphabet is a set of symbols:

.

A | are strings of symbols:

0,1,00,01,10,1,...

A language is a set of sentences:

A is a finite list of rules
defining a language.

S—>» 0A B—> 1B
A—> 1A B —>» OF
A—> 0B F—>c¢

Image source: Nowak et al. Nature, vol 417, 2002

Languages: “A language is

a collection of sentences of
finite length all constructed
from a finite alphabet of
symbols”

Grammars: “A grammar

can be regarded as a device
that enumerates the
sentences of a language” -
nothing more, nothing less

N. Chomsky, Information
and Control, Vol 2, 1959

The Chomsky Hierachy "

A containment hierarchy of classes of formal Ianguéges

Context-

Recursively-

(PDA) sensitive enumerable

(LBA) e

Alphabet

An alphabet is a finite, non-empty set of
symbols

» We use the symbol > (sigma) to denote an
alphabet
 Examples:
- Binary:) ={0,1}
- All lower case letters:) ={a,b,c,..z}
- Alphanumeric:) = {a-z, A-Z, 0-9}
- DNA molecule letters:) ={a,c,qg,t}

Strings

A string or word is a finite sequence of
symbols chosen from)

« Empty string is ¢ (or “epsilon”)

» Length of a string w, denoted by “|w|” , is
equal to the number of (non-) characters in the
string
- E.g., x=010100 x| =6
o Xx=01e0e1e00¢ x| =7

- Xy = concatentation of two strings x and y

Powers of an alphabet

Let > be an alphabet.

> YK =the set of all strings of length k
o ¥*=50U>"U>?U ...

o Yr=5TU>2U>3U ...

Languages

L is a said to be a language over alphabet), only if L C > *

=>» this is because) * is the set of all strings (of all possible
length including 0) over the given alphabet)

Examples:

1.Let L be the language of all strings consisting of n 0" s

followed by n 1’ s:
L = {¢,01,0011,000111,...}

2.Let L be the language of all strings of with equal number of
0" sand 1’ s:
L = {¢,01,10,0011,1100,0101,1010,1001,...}

Definition: @ denotes the Empty language

|

o letl ={c}; Is | =F7? }
NO

10

The Membership Problem

Given a string w &) *and a language L
over), decide whether or not w &L.

Example:
Let w = 100011

Q) Is w € the language of strings with
equal number of Os and 1s?

11

Finite Automata

» Some Applications

- Software for designing and checking the behavior
of digital circuits

- Lexical analyzer of a typical compiler

- Software for scanning large bodies of text (e.g.,
web pages) for pattern finding

- Software for verifying systems of all types that
have a finite number of states (e.g., stock market
transaction, communication/network protocol)

12

Finite Automata : Examples
» On/Off switch o

Start
» Modeling recc
(11 then”

Start state Transmon Intermedlate Final state
state

13

Structural expressions

o Grammars

» Regular expressions

> E.g., unix style to capture city names such
as “Palo Alto CA” :

[A-Z][a-z]*([l[A-Z][a-z]")"[IIA-Z][A-Z]

14

Some things you can do with FSTs

 Morphological analysis

* Text analysis/normalization
> Word segmentation
> Abbreviation expansion
> Digit-to-number-name mappings
i.e. mapping from writing to language
e Syntactic analysis
o E.g. part-of-speech tagging
* (With weights) pronunciation modeling and
language modeling for speech recognition

What is morphology!?

e scripsérunt is third person, plural,
perfect, active of scribo (‘| write’)

* Morphology relates word forms
> the “lemma” of scripsérunt is scribo

» Morphology analyzes the structure of
word forms

o scripsérunt has the structure scrib+s+eérunt

Morphology is a relation

* Imagine you have a Latin morphological
analyzer comprising:
° D: a relation that maps between surface form
and decomposed form

° L:a relation that maps between decomposed
form and lemma

e Then:

o scripsérunt oD = scrib+s+eérunt
o Scripsérunt o D oL = scribo

English regular plurals

e cat +s = cats /s/
* dog + s = dogs /z/
* spbouse + s = spouses /9z/

e This can be implemented by a rule that
composes with the base word, inserting
the relevant form of the affix at the end

Templatic affixes in Yowlumne

Neutral Affixes

Template Affixes

Root

~al
“dubitative’

-t
‘passive aorist’

-inay
‘gerundial’
CVC(C)

-[aa
“durative’
CVCVV((O)

caw ‘shout’

caw-al

caw-1

caw-inay

cawaa- [aa-n

cuum “destroy’

cuume-al

cuume-i

cum-inay

cumuu-[aa-n

hoyoo “name’

hoyoo-al

hoyoo-1

hoy-inay

hoyoo-[aa-n

diiyl “guard’ diyl-al diyl-t diyl-inay diyiil-faa-n
Jilk “sing’ [1lk-al [1lk-t J1lk-inay [1liik-[aa-n
hiwiit “walk’ hiwiit-al hiwiit-t hiwt-inay hiwiit-[aa-n

Transducer for each affix transforms base into required templatic

form and appends the relevant string.

Subtractive morphology

Singular Plural Gloss

pitat-ii-n pit-li-n “to slice up the middle”
/pitat-1i-n/

lataf-ka-n lat-ka-n “to kick something’
tiwap-li-n tiw-wi-n “lo open something’
/tiw-li-n/

atakaa-li-n atak-li-n ‘to hang something’
icoktakaa-li-n icoktak-li-n “to open one’s mouth’
albitii-li-n albit-1i-n “to place on top of”
citip-ka-n cit-ka-n ‘o spear something’
facoo-ka-n fas-ka-n “to flake oft”
/fac-ka-n/

onasanay-li-n onasan-niici-n ‘to twist something on’

ivvakohop-ka-n iyyakof-ka-n ‘o trip”
/iyyakoh-ka-n/

koyof-fi-n koy-li-n "to cut something”
/koyof-1i-n/

Transducer deletes final VC of the base...

Bontoc infixation

anty oak “tall’ umantj oak "l am getting taller’
kdawisar “good” kum dwisar 1 am getting better
pisiak Cpoor’ pumisiak 1 am getting poorer

11

e Insert a marker “>" after the first
consonant (if any)

(11 b4

* Change "> into the infix —um-

£=
— I N s
(: _cc i 3 | erthe
—G)— ¥ g ©
—_/

Reduplication: Gothic

Infimtive Gloss Preterite
falpan “fold” faitalp
haldan ‘hold” haihald
ga-staldan ‘possess’ ga-staistald
af-aikan ‘deny’ af-aiaik
maitan ‘cut’ maimait
skaidan ‘divide’ skafskaip
slepan “sleep’ saislep
oretan ‘grest’ gaigrot
ca-redan ‘reflectupon’ ga-rairop
tekan ‘touch’ taitok
salan ‘SOW saiso

Problem: mapping w to ww is not a regular relation

Factoring Reduplication

e Prosodic constraints

o= FoR={4)Caif" X Xoaisikodip

» Copy verification transducer C

U ~[X7s1 0 sy 17 U U DRI Y

scsegments i€indices s€segments

Non-Exact Copies

o Dakota (Inkelas & Zoll, 1999):

kicax€ana ‘he made 1t for them quickly’

Non-Exact Copies

e Basic and modified

stems in Sye (Inkelas &
Zoll, 1999):

cw-amol-omol

“they will fall all over”

Basic | Modified | Gloss
evcah | ampcah | ‘defecate’
evinte | avinte ‘look after’
evsor | amsor ‘wake up’
evtit avtit ‘meet”
ocep | agkep ‘fly’

ochi aghi ‘see 1t’
omol | amol “fall’

oruc anduc ‘bathe’
ovolt | ampoli “‘turn 1t”
ovyu- | avyu- (causative prefix)
oW1 awl ‘leave’

pat ampat ‘blocked’
vag ampag ‘eat’

Morphological Doubling Theory
(Inkelas & Zoll, 1999)

* Most linguistic accounts of reduplication
assume that the copying is done as part of

morphology
e |In MDT:
> Reduplication involves doubling at the
morphosyntactic level — i.e. one is actually

simply repeating words or morphemes

> Phonological doubling is thus expected, but
not required

Gothic Reduplication under
Morphological Doubling Theory

hathaldq—:

[+pret]

ald hold h«'%lld hold

[_[ﬁ [+pref] [+pret]

hai hald

Another Example:
Linguistic analysis of text

* Maps between the stuff you see on the page —
e.g. text written in the standard orthography of
a language — into linguistic units (words,
morphemes, phonemes...)

e For example:
° | ate a 25kg bass
> [a1 &1t © twentl farv kilogreem bas]

e This can be done using transducers

° But is the mapping between writing and language
really regular (finite-state)?

Linguistic analysis of text

» Abbreviation expansion

e Disambiguation

 Number expansion

* Morphological analysis of words
* Word pronunciation

A transducer for number names

Consider a machine that maps between digit strings and their reading as number names
in English.

30,294,005,179,018,903.56 —
thirty quadrillion, two hundred and ninety four trillion, five billion, one hundred seventy nine
million, eighteen thousand, nine hundred three, point five six

Lk
i S I S
el i is
-
¥
ey

Mapping between speech and writing

It seems obvious on the face of it that the
mapping between speech and its written form
is regular. After all, the words are ordered in
the same way as speech. Even the

letters tend to be ordered in the same

way as the sounds they represent.

Some examples where it isn’ t...

1 o fro . . ’
honorific inversion

TA:&EXE#E? hk?-w ‘rulers’

q 3 m{rﬂ «ﬁ sn-wt ‘sisters’

y 5 (S BE R O

‘:I .:b ﬁ .:B ﬂ .}i nir-w ‘gods’

— — ; :
™~W names

AAAAAA AAAAAA,

5 :
T ke Rt T
{l PR sn=-wt sisters

Finite state methods

* In morphology they seem almost exactly
correct as characterizations of the natural
phenomenon

* In the mapping from writing to language,
again, finite-state models seem almost
exactly correct

Text Normalization

e Conversion of text that includes ‘non-
standard’ words like numbers, abbreviations,
misspellings ... into normal words.

> Abbreviation expansion (including novel
abbreviations)

> Expansion of numbers into ‘number names’
> Correction of misspellings
> Disambiguation in cases where there is ambiguity

Where is normalization needed!?
 Very little in cases like this:

Alice was beginning to get very tired of sitting by her sister on the bank, and
of having nothing to do: once or twice she had peeped into the book her
sister was reading, but it had no pictures or conversations in it,‘and what is
the use of a book, thought Alice ‘without pictures or conversation?’

So she was considering in her own mind (as well as she could, for the hot
day made her feel very sleepy and stupid), whether the pleasure of making a
daisy-chain would be worth the trouble of getting up and picking the daisies,
when suddenly a White Rabbit with pink eyes ran close by her.

Where is normalization needed?

e A lot in cases like this:

CUST RCVD LTTRE CNCENG LOCAL SRVC

VISIT NECESSARY BUT CST STILL HAS PAC BELL SERYV ON OLD TN AT
RESIDENCE

ORDERD CALLNG CRDS PER CSR RQST
Ist att, left mssg for CB from Lynda, will wait for call

H0's Sutton Place Area Convertible 3BR 1400 SF 2BR, 2Bth, L-Shaped LR, S.E.
Open Vus, Gar, Rf Dk, Mid $400K’s Thompson Kane Ina 339-8300

57 ST E/1st & 2nd Ave Huge drmn 1 BR 750+ sf, lots of sun & clsts. Sundeck &
Indry facils. Askg $187K, maint $868, utils incld. Call Bkr Peter 914-428-9054.

Humans are pretty good at this: can
you read this?

f u cn rd ths thn u r dng btr thn ny
autmtc txt nrmliztion prgrm cn do.

How about this?

Aoccdrnig to a rscheearch at Cmabrigde
Uinervtisy, it deosn’t mttaer in what oredr the
Itteers in a wrod are, the olny iprmoetnt tihng is
taht the frist and Isat Itteer be at the rghit pclae.
The rset can be a total mses and you can sitll raed
it wouthit porbelm. Tihs is bcuseae the huamn mnid
deos not raed ervey lteter by istlef, but the wrod as
a wlohe.

Or this?

Goccedrnia to a hscheearcr at Emabrigdc
Yinervtisu, it teosn’d rttaem in tahw

rredo the stteerl in a drow are, the ylno
tprmoetni gihnt is taht the trisf and tsal

rtteel be at the tghir eclap. The tser can be a lotat
ssem and you can litls daer it

touthiw morbelp. Siht is ecuseab the nuamh dnim
seod not daer yrvee rtetel by

fstlei, but the drow as a elohw.

Two components of text normalization

* Given a string of characters in a text,
what is the (reasonable) set of possible
actual words (or word sequences) that
might correspond to it.

* Which of those is right for the particular
context!?

An illustration

Hiswleeest |23 KoagWAvedoe:s

Two components of text normalization

* A component that gives you the set of possibilities:
o |23 = one hundred (and) twenty three
o |23 = one twenty three

o |23 = one two three

* A component that tells you which one(s) are
appropriate to a particular context.

A concrete example of finite-state methods in text
normalization: digit to number name translation

e Factor digit string:

o [23 -1 -102+2 -10'+3
* Translate factors into number names:
o 102 — hundred
c 2 10! — twenty
o | «10"+ 3 — thirteen

e Languages vary on how extensive these lexicons are.
Some (e.g. Chinese) have very regular (hence very
simple) number name systems; others (e.g. Urdu/Hindi)
have a large set of number names with a name for
almost every number from | to 100.

* Each of these steps can be accomplished with FSTs

Urdu

(H|nd|) Number Names

ik-kees ikta-lees ik-shat 81 | ik-si

2 | dau 22 | ba-ees 42 | baya-lees 62 | ba-shat 82 | baya-si

3 | teen 23 | ta-ees 43 | tainta-lees 63 | tere-shat 83 | tera-si

4 | chaar 24 | chau-bees 44 | chawa-lees 64 | chaun-shat 84 | chaura-si

5 | paanch 25 | pach-chees 45 | painta-lees 65 | paen-shat 85 | picha-si

6 | chay 26 | chab-bees 46 | chaya-lees 66 | sar-shat/chay-aa-shat 86 | chaya-si

7 | saath 27 | satta-ees 47 | santa-lees 67 | sataath 87 | sata-si

8 | aath 28 | attha-ees 48 | arta-lees 68 | athath 88 | atha-si

9 | nau 29 | unat-tees 49 | un-chas 69 | unat-tar 89
10 | dus 30 | tees 50 | pa-chas 70 | sat-tar 90 | navay
11 | gyaa-raan 31 | ikat-tees 51 | ika-vun 71 | ikat-tar 91 | ikan-vay
12 | baa-raan 32 | bat-tees 52 | ba-vun 72 | bahat-tar 92 | ban-vay
13 | te-raan 33 | tain-tees 53 | tera-pun 73 | tehat-tar 93 | teran-vay
14 | chau-daan 34 | chaun-tees 54 | chav-van 74 | chohat-tar 94 | chauran-vay
15 | pand-raan 35 | pan-tees 55 | pach-pan 75 | pagat-tar 95 | pichan-vay
16 | so-laan 36 | chat-tees 56 | chap-pan 76 | chayat-tar 96 | chiyan-vay
17 | sat-raan 37 | san-tees 57 | sata-van 77 | satat-tar 97 | chatan-vay
18 | attha-raan 38 | ear-tees 58 | atha-van 78 | athat-tar 98 | athan-vay
19 | un-nees 39 | unta-lees 59 [un-shat 79 | una-si 99 | ninan-vay
20 | bees 40 | cha-lees 60 | shaat 80 | assi 100 | saw

Digit string factoring transducer
(fragment)

Germanic “decade flop”

zwanzig vier

24 une

70’s

7-<epsilon=

1:emn

Digit-string to number name translation: German

* Factor digit string:
o [23 — 1 -102+2 -10'+3
e Flip decades and units:
2 -10'+3—>3+2 -10!
* Translate factors into number names:
> 102 — hundert
-2 -10! — zZwanzig
o | «10"+ 3 — dreizehn

German number grammar (fragment)

TEN — zehn | TEENW
TEN — UNITW und TENW
TEN — UNITW
TEN — TENW
TENW — zwanzig |
dreiBig |
vierzig |
funfzig . . .
TEENW — elf |
zZwolf |
dreizehn |

vierzehn . . .

Concrete example from English

Consider a machine that maps between digit
strings and their reading as number names in

English.

30,294,005,179,018,903.56 —

thirty quadrillion, two hundred and ninety four
trillion, five billion, one hundred seventy nine million,
eighteen thousand, nine hundred three, point five six

566 states and 1492 arcs

l:<epsilon= e <epsilon>:one
e <epsilon=>two

<epsilon=:poi1 <epsilon=ww ~<epsilon
35 epsilon>:point _Q epsilon>ww 30 5:<epsilon
6-<epsilon>

/:\ <epsilon>:five
- 126 -
U <epsilon™>:six

7N

The Problem: Rampant Abbreviations

e UNE-P RAMP notes:
CUST RCVD LTTR CNCRNG LOCAL SRVC
VISIT NECESSARY BUT CST STILL HAS PAC BELL SERV ON OLD TN AT RESIDENCE
ORDERD CALLNG CRDS PER CSR RQST

e Worldnet notes:
Cust wanted to know if we currently had 4.95 pp Adv we do not
cust still has at&t s/w on comp he is going to be moving to PA in a mth and wants to know if
he can reactivate this acct

e LIFE Remarks:

1st att, left mssg for CB from Lynda, will wait for call
CUST REQUESTD CHANGE IN HUNTING, FOLLOW ORDER. NO FOUND. CUST

WITH RESELLER ALEGIANCE.

52

What do | mean by “Abbreviation”?

Any word that is shortened from its normal spelling, but that should be read as if
it were spelled in full.

Under this definition:

e cust and mth are abbreviations since they are clearly to be read customer, month

o NATO, UN, are not abbreviations since they are standardly read as words
(“acronyms”) or sequences of letters.

e Some terms such as LD (“long distance”) have become pretty standard, and so
will not be treated as abbreviations.

NSWV Classification

TABLE I. Taxonomy of non-standard words used in hand-tagging and in the text normalization

alpha

nwHEmMw <z

an-z

EXPN
LSEQ
ASWD
MSPL

NUM
NORD
NTEL
NDIG
NIDE
NADDR
NZIP
NTIME
NDATE
NYER
MONEY
BMONEY
PRCT

SPLT

SLNT
PUNC
FNSP

URL
NONE

models
abbreviation adv, N.Y, mph, gov't
letter sequence CIA,D.C,CDs
read as word CAT, proper names
misspelling geogaphy
number (cardinal) 12,45,1/2,0-6
number (ordinal) May 7, 3rd, Bill Gates III
telephone (or part of) 212 555-4523
number as digits Room 101
identifier 747,386,15, pcll10, 3A
number as street address 5000 Pennsylvania, 4523 Forbes
zip code or PO Box 91020
a (compound) time 3.20,11:45
a (compound) date 2/2/99, 14/03/87 (or US) 03/14/87
year(s) 1998, 80s, 1900s, 2003
money (US or other) $3.45, HKS$300, Y20,000, $200K
money tr/m/billions $3.45 billion
percentage 75%, 3-4%
mixed or “split” WS99, x220, 2-car

(see also SLNT and PUNC examples)

not spoken, word boundary or emphasis character:
word boundary M.bath, KENT*RLTY, really_
not spoken, non-standard punctuation: “***” in
phrase boundary $99 OK***Whites,”...” in DECIDE...Year
funny spelling slloooooww, sh*t

url, pathname or email
should be ignored

http:/lapj.co.uk, lusr/local, phj@tpt.com
ascii art, formatting junk

Normalization

cci vm not wrking has not fully complted xfer to svc

One Approach

Large script with lots of rules:

e s/ AN ADV / AN ADVERTISEMENT /
s/ 2 ADVS* / TO ADVISE /
s/TO ADVS* / TO ADVISE /
s/ ADVS*D* / ADVISED /g
s/ AMER[]* / AMERICA /
s/ AMT / AMOUNT /

e Cf. U Penn Linguistic Data Consortium’s “Text Conditioning Tools"

Problem: How many ways can you spell customer in UNE-P

N AEWN -

RAMP?

cmr dscnnctd
com upset

cs clg

csmr cling

csr called

cst understood
cstm wnts
cstmr advsd
cstr claims

Csu req

csut wntd

cts called

cu called

cus advised
cust care
custm clid
custo call
customer chngd
custr upst

customer disconnected
customer upset
customer calling
customer calling
customer called
customer understood
customer wants
customer advised
customer claims
customer request
customer wanted
customer called
customer called
customer advised
customer care
customer called
customer call
customer changed
customer upset

Corpus-Dependent Unsupervised Abbreviation Expansion
(Sproat et al. 2001)

Problem: given a previously
unseen abbreviation, how do
you use corpus-internal
evidence to find the
expansion into a standard
word?

Example: cus wnt info on services and chrgs

Elsewhere in Corpus: .. . customer wants . . .
... wants info on vmail . . .

A Source-Channel Language Model Approach

W =~ argmaxy p(o|t, w)p(t|w)p(w)

Where:

e 0 are the observed text
e w are the underlying words

e t are the tags (in this case the tags “abbreviate” and “don’t abbreviate™)

WFST-based Implementation

T’ = mo(ShortestPath(T o A~ o L))
Where:

e T is text
e T is normalized text
e A is abbreviation model

e L is language model

cf. CLG model used in ASR

Processing Steps

Preprocess text (“splitter”).

Collect possible abbreviations and their possible expansions; use a stoplist of
things not to expand.

Train a language model on “clean” text .

Normalize text.

Splitter

o ORD#C219XXXXXXX V2-REJ 9481 FEA DOES NOT EXIST ON ACCT/2ND ATTEMPT/TO
BE PLACED IN TTID GA-CWD/IF CUS CALLS PLEASE REFER TO OM VERIBAGE

e ord # ¢ 219XXXXXXX v 2 - rej 9481 fea does not exist on acct / 2nd attempt
/ to be placed in ttid ga - cwd / if cus calls please refer to om veribage

e Lextools rule-based system (also a perl version). Rules attempt to identify:

» Dates, times (various formats)
* telephone numbers

= fractions

= filenames/URL's,

* ordinals
* ...

Otherwise mixed alpha/non-alpha strings are split.

Finding Abbreviations and Potential Expansions: Dictionaries

e Large dictionary of ordinary words (320K words from U Penn XTag dictionary)
augmented with 50K proper names.

Outstanding problem: abbreviations can also be words — kit (kitchen); abt
(about).

e Stoplist of things to leave alone. E.g.:
nfcc, rcam, att, cio, asap . . .
(Has same problem as above)

e If a token is (almost) purely alphabetic and it's not in the above list, treat it as
a potential abbreviation

Problem: some abbrevations use non-alphabetic symbols — 2 go, 4x’s

Finding Abbreviations and Potential Expansions: Approximate
Matching

e Collect bigrams of ordinary words.

e Collect token bigrams containing at least one potential abbreviation.

e Match abbreviation bigrams to word bigrams: e.g. cus wnt — customer went.
Match potential abbreviation with full word if:
» Both start with same letter

* The abbreviation contains only letters and a few acceptable non-alphabetic symbols (, ., /)
*» No letter in the abbreviation occurs more frequently than it does in the full form

* Letters in the abbreviation occur in (roughly) the same sequence as they do in the full form.
So ctsr will match with customer but clld wouldn’t.

Finding Abbreviations and Potential Expansions: Approximate
Matching

C see

e A few “phonetic’ matches are allowed:
X- trans-, ex-

e Some examples of matched pairs:

cus wnt customer went, customer wanted, customer wants
bill pym bill payment
insd wr inside wire, inside wiring, inside work

pymnt argmnt payment arrangement, payment agreement,
payment arrangements

intrnt adlt internet adult

line bld line blocked, line billed

Language Modeling

e Train a word trigram model with standard Katz backoff on “sanitized” text:

cust business acct — trns to business office

<ABBR> business <ABBR> <PUNC> <ABBR> to business office

e Implemented using the WFST-based LM tools that we've seen before

WFST-based Implementation

T' = my(ShortestPath(T o A~' o L))

wnl wants

Further issues

e Run the normalization on the training data, treat the result as "“truth”, and
reestimate the expansions of abbreviations; can also retrain the LM on the new
“truth”.

This has been shown to reduce error rates by as much as 20% on classified ads.

This allows one to reestimate each component term in:

p(olt, w)p(t|w)p(w)

e Does limiting the detection of abbreviations to bigrams that match full word
bigrams help or hurt?

Some Example Normalizations (All RAMP Model)

cst cld 2 hv cllr id blck rmvn snt local form
2 rmvn local form

cst clld to verify insde wre / i cncled his near mve on accident / cst now wnts to
ploc to anther cmpny

to verify /i his near on accident / cst
now wants to ploc to anther cmpny

cust no Inger wnts Id on acct
no Id on

xplnd chrgs .. cust stated he w/ pay 26.45 & then w/ cancel his srvc w/ att
stated he pay 26.45 & then cancel his
att

Back to Morphology

e Morphology is the study of the way words are
built up from smaller meaning-bearing units,
morphemes.

* Two broad classes of morphemes:

> The stems: the “main” morpheme of the word,
supplying the main meaning, while

> The affixes: add “additional” meaning of various
kinds.

» Affixes are further divided into prefixes,
suffixes, infixes, and circumfixes.
o Suffix: eat-s
° Prefix: un-buckle
o Circumfix: ge-sag-t (said) sagen (to say) (in German)
° Infix: hingi (borrow) humingi (the agent of an
action))in Philippine language Tagalog)

Survey of (Mostly) English Morphology

e Prefixes and suffixes are often called concatenative
morphology.

* A number of languages have extensive non-
concatenative morphology

> The Tagalog infixation example

- Templatic morphology or root-and-pattern
morphology, common in Arabic, Hebrew, and other
Semitic languages

e Two broad classes of ways to form words from
morphemes:

° Inflection: the combination of a word stem with a
grammatical morpheme, usually resulting in a word of the
same class as the original tem, and usually filling some
syntactic function like agreement, and

> Derivation: the combination of a word stem with a
éljammatical morpheme, usually resulting in a word of a
ifferent class, often with a meaning hard to predict exactly.

Survey of (Mostly) English Morphology
Inflectional Morphology

* In English, only nouns, verbs, and sometimes
adjectives can be inflected, and the number
of affixes is quite small.

¢ Inflections of nouns in English:
> An affix marking plural,

cat (-s), thrush(-es), ox (oxen), mouse
(mice)

ibis(-es), waltz(-es), finch(-es),
box (-es), butterfly(-lies)
> An affix marking possessive

llama’s, children’s, llamas’,
Furipides’ comedies

Survey of (Mostly) English Morphology
Inflectional Morphology

* Verbal inflection is more complicated than nominal inflection.
o English has three kinds of verbs:
Main verbs, eat, sleep, impeach
Modal verbs, can will, should
Primary verbs, be, have, do

> Morphological forms of regular verbs

stem walk merge try map

-s form walks merges | tries maps
-ing principle walking | merging | trying | mapping
Past form or —ed participle | walked | merged | tried | mapped

— These regular verbs and forms are significant in the morphology of
English because of their majority and being productive.

Survey of (Mostly) English Morphology
Inflectional Morphology

> Morphological forms of irregular verbs

stem eat catch cut

-s form eats catches | cuts
-ing principle eating | catching | cutting
Past form ate caught cut
—ed participle eaten | caught cut

Survey of (Mostly) English Morphology
Derivational Morphology

* Nominalization in English:

> The formation of new nouns, often from verbs or adjectives

Suffix Base Verb/Adjective Derived Noun
-action | computerize (V) computerization
-ee appoint (V) appointee
-er kill (V) killer
-ness fuzzy (A) fuzziness

— Adjectives derived from nouns or verbs

Suffix Base Noun/Verb Derived Adjective
-al computation (N) computational
-able embrace (V) embraceable
-less clue (A) clueless

Survey of (Mostly) English Morphology
Derivational Morphology

 Derivation in English is more complex
than inflection because

> Generally less productive
A nominalizing affix like —ation can not be added to
absolutely every verb. eatation(*)

° There are subtle and complex meaning
differences among nominalizing suffixes. For
example, sincerity has a subtle difference in
meaning from sincereness.

Finite-State Morphological Parsing

e Parsing English morphology

Input Morphological parsed output

cats cat +N +PL

cat cat +N +SG

cities city +N +PL

geese goose +N +PL

g00se (goose +N +S3G)or (goose +V)

200s€S goose +V +3SG
merging | merge +V +PRES-PART
caught |(caught +V +PAST-PART)or (catch +V +PAST)

Finite-State Morphological Parsing

* We need at least the following to build a
morphological parser:

1. Lexicon: the list of stems and affixes, together with
basic information about them (Noun stem or Verb
stem, etc.)

2. Morphotactics: the model of morpheme ordering
that explains which classes of morphemes can follow
other classes of morphemes inside a word. E.g., the
rule that English plural morpheme follows the noun
rather than preceding it.

3. Orthographic rules: these spelling rules are used to
model the changes that occur in a word, usually
when two morphemes combine (e.g., the y—ie
spelling rule changes city + -s to cities).

Finite-State Morphological Parsing

The Lexicon and Morphotactics

e A lexicon is a repository for words.

> The simplest one would consist of an explicit list of every word of the language.
Incovenient or impossible!

> Computational lexicons are usually structured with
a list of each of the stems and

Affixes of the language together with a representation of morphotactics telling us how they
can fit together.

> The most common way of modeling morphotactics is the finite-state automaton.

reg—noun plural (—s)
Reg-noun | Irreg-pl-noun Irreg-sg-noun plural
fox geese goose -S
irreg—pl—noun fat shf:ep sheep
fog Mice mouse
fardvark

irreg—sg—noun
An FSA for English nominal inflection

Finite-State Morphological Parsing

The Lexicon and Morphotactics

irreg—past—verb—form

preterite (—ed)

pst participle (—ed)

prog (—ing)

irreg—verb—stem

3—sing (—s)

An FSA for English verbal inflection

Reg-verb-stem Irreg-verb-stem Irreg-past-verb past Past-part | Pres-part | 3sg
walk cut caught -ed -ed -ing -S
fry speak ate
talk sing eaten
impeach sang

spoken

Finite-State Morphological Parsing

The Lexicon and Morphotactics

e English derivational morphology is more complex than
English inflectional morphology, and so automata of
modeling English derivation tends to be quite complex.

> Some even based on CFG
e A small part of morphosyntactics of English adjectives

. —er —est big, bigger, biggest
- ady—root cool, cooler, coolest, coolly

@ @ red, redder, reddest
clear, clearer, clearest, clearly, unclear, unclearly
€

happy, happier, happiest, happily
unhappy, unhappier, unhappiest, unhappily
An FSA for a fragment of English adjective real, unreal, really

Morphology #1

Finite-State Morphological Parsing

The FSA#1 recognizes all the listed adjectives, and ungrammatical forms
like unbig, redly, and realest.

Thus #1 is revised to become #2.
The complexity is expected from English derivation.

adj—root,

adj—root,

An FSA for a fragment of English adjective
Morphology #2

Finite-State Morphological Parsing

noun; —ize/V —ation/N

An FSA for another fragment of English derivational morphology

Finite-State Morphological Parsing

* We can now use these FSAs to
solve the problem of
morphological recognition:

> Determining whether an input
string of letters makes up a
legitimate English word or not

> We do this by taking the
morphotactic FSAs, and plugging in
each “sub-lexicon” into the FSA.

> The resulting FSA can then be
defined as the level of the individual
letter.

Finite-State Morphological Parsing
Morphological Parsing with FST

* Given the input, for example, cats, we would like to produce cat +N +PL.
* Two-level morphology, by Koskenniemi (1983)

> Representing a word as a correspondence between a lexical level
Representing a simple concatenation of morphemes making up a word, and

> The surface level
Representing the actual spelling of the final word.

e Morphological parsing is implemented by building mapping rules that maps
letter sequences like cats on the surface level into morpheme and features
sequence like cat +N +PL on the lexical level.

Lc.’.\‘ica/% cla|t [+N|[+PL é

Surface i clal|t |s %

Finite-State Morphological Parsing
Morphological Parsing with FST

e The automaton we use for performing the mapping
between these two levels is the finite-state
transducer or FST.

> A transducer maps between one set of symbols and another;
> An FST does this via a finite automaton.

e Thus an FST can be seen as a two-tape automaton
which recognizes or generates pairs of strings.

e The FST has a more general function than an FSA:
> An FSA defines a formal language
> An FST defines a relation between sets of strings.

e Another view of an FST:
> A machine reads one string and generates another.

Finite-State Morphological Parsing
Morphological Parsing with FST

 FST as recognizer:

° a transducer that takes a pair of strings as input and
output accept if the string-pair is in the string-pair
language, and a reject if it is not.

 FST as generator:

> a machine that outputs pairs of strings of the

language. Thus the output is a yes or no, and a pair of
output strings.

e FST as transducer:

> A machine that reads a string and outputs another
string.

 FST as set relater:
> A machine that computes relation between sets.

Finite-State Morphological Parsing
Morphological Parsing with FST

e A formal definition of FST (based on the Mealy
machine extension to a simple FSA):

> Q:a finite set of N states gy, q,,--., gy

o 2:a finite alphabet of complex symbols. Each complex
symbol is composed of an input-output pair i : 0; one
symbol | from an input alphabet I, and one symbol o
from an output alphabet O, thus X C IxO. [and O may
each also include the epsilon symbol €.

° (q: the start state
o F:the set of final states, F C Q

o 9(q, i:0): the transition function or transition matrix
between states. Given a state ¢ € Q and complex
symbol i:o € X, 0(q, i:0) returns a new state g € Q.0
is thus a relation from Q x X to Q.

Finite-State Morphological Parsing
Morphological Parsing with FST

FSAs are 1somorphic to regular languages, FSTs are isomorphic
to regular relations.

Regular relations are sets of pairs of strings, a natural extension
of the regular language, which are sets of strings.

FSTs are closed under union, but generally they are not closed
under difference, complementation, and intersection.
Two useful closure properties of FSTs:

o Inversion: If 7' maps from / to O, then the inverse of 7, 7! maps
from O to 1.

> Composition: If 7| 1s a transducer from /, to O, and 7, a transducer
from /, to O,, then T, < T, maps from [, to O,

Finite-State Morphological Parsing
Morphological Parsing with FST

» Inversion is useful because it makes it easy to convert a FST-as-parser into an FST-
as-generator.

» Composition is useful because it allows us to take two transducers than run in
series and replace them with one complex transducer.

o Ty ° TH(S) = TK(T(S))

reg—noun—stem a +N:¢ E
irreg-sg-noun—form ' % Reg-noun Irreg-pl-noun Irreg-sg-noun
fox goieoese goose
irreg—pl-noun—form fat Sheep Sheep
fog m 0:1 u:gs:c € mouse
. . aardvark
A transducer for English nominal

number inflectionT,

Finite-State Morphological Parsing
Morphological Parsing with FST

reg—noun—stem | aardvark

reg—noun—stem | dog

reg—noun—stem | cat

reg—noun—stem | fox

irreg—sg—noun—form | goose

irreg—sg—noun—form | sheep

irreg—sg—noun—form | mouse

irreg—pl-noun—form | go:eo:ese

irreg—pl-noun—form | sheep

irreg—pl-noun—form | m o:iu:es:ce

The transducer T .., which maps roots to their root-class

Finite-State Morphological Parsing

Morphological Parsing with FST

A: morpheme boundary
#: word boundary

f |o]| X |+N|+PL

Lexical é

[nre/'me(li(/re% f o|X|A]|s | #

A fleshed-out English nominal inflection FST
T, =T T

lex num® stems

Finite-State Morphological Parsing
Orthographic Rules and FSTs

* Spelling rules (or orthographic rules)

Name Description of Rule Example
Consonant doubling 1-letter consonant doubled before -ing/-ed beg/begging

E deletion Silent e dropped before -ing and -ed make/making
E insertion ¢ added after -s, -z, -x, -ch, -sh, before -s watch/watches
Y replacement -y changes to -ie before -s, -i before -ed try/tries

K insertion Verb ending with vowel + -c add -k panic/panicked

— These spelling changes can be thought as taking as input a simple concatenation of
morphemes and producing as output a slightly-modified concatenation of

morph-=—"--

Imw'nwdiutci f ol x| ?|s #

Suface ¢ | f [o]| x|e |s

[,c.\'ic'u/i f O| X | +N |+PL

3

3

Finite-State Morphological Parsing
Orthographic Rules and FSTs

* “insert an e on the surface tape just when the lexical tape has a
morpheme ending in x (or z, etc) and the next morphemes is -s”

X
e—>el {s{__ sH
z

“rewrite a to b when it occurs between c and d’

a—bl/c__d

Finite-State Morphological Parsing
Orthographic Rules and FSTs

State \ Input S:s XX Z:7Z e €:e # other
qgo: 1 | | 0 0 0
q1: | | | 2 - 0 0
qo: 5 | | 0 3 0 0
e 4 | - o I Y
2 S N N R A
qs | | | 2 - - 0

Combining FST Lexicon and Rules

Lexical 5 | T [o] x [+N[+PL <

Intermediate % flo|x|[A]|s i
e T T
{FST,1 v FST.|
I'---l'---]] I.___I.___
I e e e e e e ; --------- d

Lexical% f O | X | +N [+PL

- ©0000Q

#

b
>
n

Intermediate % f|lo

Te—insert E§

Surface % f

Combining FST Lexicon and Rules

e The power of FSTs is that the exact same cascade
with the same state sequences is used

> when machine is generating the surface form from the
lexical tape, or

> When it is parsing the lexical tape from the surface tape.
* Parsing can be slightly more complicated than
generation, because of the problem of ambiguity.

> For example, foxes could be fox +V +3SG as well as
fox +N +PL

Lexicon-Free FSTs: the Porter Stemmer

¢ [Information retrieval

e One of the mostly widely used stemming algorithms is
the simple and efficient Porter (1980) algorithm, which
is based on a series of simple cascaded rewrite rules.

o ATIONAL — ATE (e.g., relational — relate)

> ING — ¢ if stem contains vowel (e.g., motoring — motor)

* Problem:
> Not perfect: error of commision, omission

e Experiments have been made

> Some improvement with smaller documents

> Any improvement is quite small

