
Finite State Transducers

COSI 114 – Computational Linguistics
James Pustejovsky

January 16, 2015
Brandeis University

2

How to do Linguistics

What is a Finite State Transducer?

•  A finite state machine with two tapes: an input
tape and an output tape.

•  This contrasts with an ordinary finite state
automaton (or finite state acceptor), which has a
single tape.

•  But …
•  How do FSAs and FSTs fit into the larger

computational landscape?

4

Theory of Computation: A
Historical Perspective

1930s •  Alan Turing studies Turing machines
•  Decidability
•  Halting problem

1940-1950s •  “Finite automata” machines studied
•  Noam Chomsky proposes the
 “Chomsky Hierarchy” for formal
 languages

1969 Cook introduces “intractable” problems
 or “NP-Hard” problems

1970- Modern computer science: compilers,
computational & complexity theory evolve

5

Languages & Grammars

Or “words”

Image source: Nowak et al. Nature, vol 417, 2002

�  Languages: “A language is
a collection of sentences of
finite length all constructed
from a finite alphabet of
symbols”

�  Grammars: “A grammar
can be regarded as a device
that enumerates the
sentences of a language” -
nothing more, nothing less

�  N. Chomsky, Information
and Control, Vol 2, 1959

6

The Chomsky Hierachy

Regular
(DFA)

Context-
free

(PDA)

Context-
sensitive

(LBA)

Recursively-
enumerable

(TM)

•  A containment hierarchy of classes of formal languages

7

Alphabet
An alphabet is a finite, non-empty set of

symbols
�  We use the symbol ∑ (sigma) to denote an

alphabet
�  Examples:
◦  Binary: ∑ = {0,1}
◦  All lower case letters: ∑ = {a,b,c,..z}
◦  Alphanumeric: ∑ = {a-z, A-Z, 0-9}
◦  DNA molecule letters: ∑ = {a,c,g,t}
◦ …

8

Strings
A string or word is a finite sequence of

symbols chosen from ∑
�  Empty string is ε (or “epsilon”)

�  Length of a string w, denoted by “|w|”, is
equal to the number of (non- ε) characters in the
string
◦  E.g., x = 010100 |x| = 6
◦  x = 01 ε 0 ε 1 ε 00 ε |x| = ?

◦  xy = concatentation of two strings x and y

9

Powers of an alphabet
Let ∑ be an alphabet.

◦  ∑k = the set of all strings of length k

◦  ∑* = ∑0 U ∑1 U ∑2 U …

◦  ∑+ = ∑1 U ∑2 U ∑3 U …

10

Languages
L is a said to be a language over alphabet ∑, only if L ⊆ ∑*

è this is because ∑* is the set of all strings (of all possible
length including 0) over the given alphabet ∑

Examples:
1. Let L be the language of all strings consisting of n 0’s

followed by n 1’s:
 L = {ε,01,0011,000111,…}

2. Let L be the language of all strings of with equal number of
0’s and 1’s:

 L = {ε,01,10,0011,1100,0101,1010,1001,…}

Definition: Ø denotes the Empty language

�  Let L = {ε}; Is L=Ø?
NO

11

The Membership Problem
Given a string w ∈∑*and a language L

over ∑, decide whether or not w ∈L.

Example:
 Let w = 100011
 Q) Is w ∈ the language of strings with
equal number of 0s and 1s?

12

Finite Automata
�  Some Applications
◦  Software for designing and checking the behavior

of digital circuits
◦  Lexical analyzer of a typical compiler
◦  Software for scanning large bodies of text (e.g.,

web pages) for pattern finding
◦  Software for verifying systems of all types that

have a finite number of states (e.g., stock market
transaction, communication/network protocol)

13

Finite Automata : Examples
� On/Off switch

� Modeling recognition of the word
“then”

Start state Final state Transition Intermediate
state

action

state

14

Structural expressions
� Grammars
� Regular expressions
◦ E.g., unix style to capture city names such

as “Palo Alto CA”:
�  [A-Z][a-z]*([][A-Z][a-z]*)*[][A-Z][A-Z]

Start with a letter

A string of other
letters (possibly
empty)

Other space delimited words
(part of city name)

Should end w/ 2-letter state code

15

Some things you can do with FSTs

�  Morphological analysis
�  Text analysis/normalization
◦  Word segmentation
◦  Abbreviation expansion
◦  Digit-to-number-name mappings
i.e. mapping from writing to language

�  Syntactic analysis
◦  E.g. part-of-speech tagging

�  (With weights) pronunciation modeling and
language modeling for speech recognition

16

What is morphology?

�  scripsērunt is third person, plural,
perfect, active of scrībō (‘I write’)

� Morphology relates word forms
◦  the “lemma” of scripsērunt is scrībō

� Morphology analyzes the structure of
word forms
◦  scripsērunt has the structure scrīb+s+ērunt

17

Morphology is a relation
�  Imagine you have a Latin morphological

analyzer comprising:
◦ D: a relation that maps between surface form

and decomposed form
◦  L: a relation that maps between decomposed

form and lemma
� Then:
◦  scripsērunt ○ D = scrīb+s+ērunt
◦  Scripsērunt ○ D ○ L = scrībō

18

English regular plurals

�  cat + s = cats /s/
�  dog + s = dogs /z/
�  spouse + s = spouses /Əz/
� This can be implemented by a rule that

composes with the base word, inserting
the relevant form of the affix at the end

19

Templatic affixes in Yowlumne

Transducer for each affix transforms base into required templatic
form and appends the relevant string.

20

Subtractive morphology

Transducer deletes final VC of the base…

21

Bontoc infixation

•  Insert a marker “>” after the first
consonant (if any)

•  Change “>” into the infix –um-

22

Reduplication: Gothic

Problem: mapping w to ww is not a regular relation

23

Factoring Reduplication

� Prosodic constraints

� Copy verification transducer C

24

Non-Exact Copies

� Dakota (Inkelas & Zoll, 1999):

25

Non-Exact Copies

�  Basic and modified
stems in Sye (Inkelas &
Zoll, 1999):

“they will fall all over”

26

Morphological Doubling Theory
(Inkelas & Zoll, 1999)

� Most linguistic accounts of reduplication
assume that the copying is done as part of
morphology

�  In MDT:
◦ Reduplication involves doubling at the

morphosyntactic level – i.e. one is actually
simply repeating words or morphemes
◦  Phonological doubling is thus expected, but

not required

27

Gothic Reduplication under
Morphological Doubling Theory

28

Another Example:
Linguistic analysis of text
�  Maps between the stuff you see on the page –

e.g. text written in the standard orthography of
a language – into linguistic units (words,
morphemes, phonemes…)

�  For example:
◦  I ate a 25kg bass
◦  [aI εIt ƏӘ twεnti faIv kIlƏӘgræm bæs]

�  This can be done using transducers
◦  But is the mapping between writing and language

really regular (finite-state)?

29

Linguistic analysis of text

� Abbreviation expansion
� Disambiguation
� Number expansion
� Morphological analysis of words
� Word pronunciation
� …

30

A transducer for number names
Consider a machine that maps between digit strings and their reading as number names
in English.

30,294,005,179,018,903.56 →
thirty quadrillion, two hundred and ninety four trillion, five billion, one hundred seventy nine
million, eighteen thousand, nine hundred three, point five six

31

Mapping between speech and writing

 It seems obvious on the face of it that the
mapping between speech and its written form
is regular. After all, the words are ordered in
the same way as speech. Even the
 tend to be ordered in the same

letters
way as the sounds they represent.

32

Some examples where it isn’t…

t w
t `nx

j m
n

nb

xpr

w

r`

‘honorific inversion’

33

Finite state methods

�  In morphology they seem almost exactly
correct as characterizations of the natural
phenomenon

�  In the mapping from writing to language,
again, finite-state models seem almost
exactly correct

34

Text Normalization
� Conversion of text that includes ‘non-

standard’ words like numbers, abbreviations,
misspellings . . . into normal words.
◦ Abbreviation expansion (including novel

abbreviations)
◦  Expansion of numbers into ‘number names’
◦ Correction of misspellings
◦ Disambiguation in cases where there is ambiguity

35

Where is normalization needed?

� Very little in cases like this:

Alice was beginning to get very tired of sitting by her sister on the bank, and
of having nothing to do: once or twice she had peeped into the book her
sister was reading, but it had no pictures or conversations in it, ‘and what is
the use of a book,’ thought Alice ‘without pictures or conversation?’

So she was considering in her own mind (as well as she could, for the hot
day made her feel very sleepy and stupid), whether the pleasure of making a
daisy-chain would be worth the trouble of getting up and picking the daisies,
when suddenly a White Rabbit with pink eyes ran close by her.

36

Where is normalization needed?

� A lot in cases like this:

37

Humans are pretty good at this: can
you read this?

f u cn rd ths thn u r dng btr thn ny
autmtc txt nrmlztion prgrm cn do.

38

How about this?

Aoccdrnig to a rscheearch at Cmabrigde
Uinervtisy, it deosn’t mttaer in what oredr the
ltteers in a wrod are, the olny iprmoetnt tihng is
taht the frist and lsat ltteer be at the rghit pclae.
The rset can be a total mses and you can sitll raed
it wouthit porbelm. Tihs is bcuseae the huamn mnid
deos not raed ervey lteter by istlef, but the wrod as
a wlohe.

39

Or this?

Goccdrnia to a hscheearcr at Emabrigdc
Yinervtisu, it teosn’d rttaem in tahw
rredo the stteerl in a drow are, the ylno
tprmoetni gihnt is taht the trisf and tsal
rtteel be at the tghir eclap. The tser can be a lotat
ssem and you can litls daer it
touthiw morbelp. Siht is ecuseab the nuamh dnim
seod not daer yrvee rtetel by
fstlei, but the drow as a elohw.

40

Two components of text normalization

� Given a string of characters in a text,
what is the (reasonable) set of possible
actual words (or word sequences) that
might correspond to it.

� Which of those is right for the particular
context?

41

An illustration

123 He has goats I live at King Avenue. Lotus for Windows

42

Two components of text normalization

�  A component that gives you the set of possibilities:
◦  123 = one hundred (and) twenty three
◦  123 = one twenty three
◦  123 = one two three

�  A component that tells you which one(s) are
appropriate to a particular context.

43

A concrete example of finite-state methods in text
normalization: digit to number name translation

�  Factor digit string:
◦  123 → 1 · 102 + 2 · 101 + 3

�  Translate factors into number names:
◦  102 → hundred
◦  2 · 101 → twenty
◦  1 · 101 + 3 → thirteen

�  Languages vary on how extensive these lexicons are.
Some (e.g. Chinese) have very regular (hence very
simple) number name systems; others (e.g. Urdu/Hindi)
have a large set of number names with a name for
almost every number from 1 to 100.

�  Each of these steps can be accomplished with FSTs

44

Urdu (Hindi) Number Names
1 eik 21 ik-kees 41 ikta-lees 61 ik-shat 81 ik-si
2 dau 22 ba-ees 42 baya-lees 62 ba-shat 82 baya-si
3 teen 23 ta-ees 43 tainta-lees 63 tere-shat 83 tera-si
4 chaar 24 chau-bees 44 chawa-lees 64 chaun-shat 84 chaura-si
5 paanch 25 pach-chees 45 painta-lees 65 paen-shat 85 picha-si
6 chay 26 chab-bees 46 chaya-lees 66 sar-shat / chay-aa-shat 86 chaya-si
7 saath 27 satta-ees 47 santa-lees 67 sataath 87 sata-si
8 aath 28 attha-ees 48 arta-lees 68 athath 88 atha-si
9 nau 29 unat-tees 49 un-chas 69 unat-tar 89

10 dus 30 tees 50 pa-chas 70 sat-tar 90 navay
11 gyaa-raan 31 ikat-tees 51 ika-vun 71 ikat-tar 91 ikan-vay
12 baa-raan 32 bat-tees 52 ba-vun 72 bahat-tar 92 ban-vay
13 te-raan 33 tain-tees 53 tera-pun 73 tehat-tar 93 teran-vay
14 chau-daan 34 chaun-tees 54 chav-van 74 chohat-tar 94 chauran-vay
15 pand-raan 35 pan-tees 55 pach-pan 75 pagat-tar 95 pichan-vay
16 so-laan 36 chat-tees 56 chap-pan 76 chayat-tar 96 chiyan-vay
17 sat-raan 37 san-tees 57 sata-van 77 satat-tar 97 chatan-vay
18 attha-raan 38 ear-tees 58 atha-van 78 athat-tar 98 athan-vay
19 un-nees 39 unta-lees 59 un-shat 79 una-si 99 ninan-vay
20 bees 40 cha-lees 60 shaat 80 assi 100 saw

45

Digit string factoring transducer
(fragment)

46

Germanic “decade flop”

24
vier zwanzig

und

47

70’s

48

Digit-string to number name translation: German

�  Factor digit string:
◦  123 → 1 · 102 + 2 · 101 + 3

� Flip decades and units:
 2 · 101 + 3 → 3 + 2 · 101
� Translate factors into number names:
◦  102 → hundert
◦  2 · 101 → zwanzig
◦  1 · 101 + 3 → dreizehn

49

German number grammar (fragment)

50

Concrete example from English

Consider a machine that maps between digit
strings and their reading as number names in
English.

30,294,005,179,018,903.56 →
thirty quadrillion, two hundred and ninety four
trillion, five billion, one hundred seventy nine million,
eighteen thousand, nine hundred three, point five six

51

566 states and 1492 arcs

52

53

NSW Classification

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Back to Morphology

�  Morphology is the study of the way words are
built up from smaller meaning-bearing units,
morphemes.

�  Two broad classes of morphemes:
◦  The stems: the “main” morpheme of the word,

supplying the main meaning, while
◦  The affixes: add “additional” meaning of various

kinds.
�  Affixes are further divided into prefixes,

suffixes, infixes, and circumfixes.
◦  Suffix: eat-s
◦  Prefix: un-buckle
◦  Circumfix: ge-sag-t (said) sagen (to say) (in German)
◦  Infix: hingi (borrow) humingi (the agent of an

action))in Philippine language Tagalog)

71

Survey of (Mostly) English Morphology

�  Prefixes and suffixes are often called concatenative
morphology.

�  A number of languages have extensive non-
concatenative morphology
◦  The Tagalog infixation example
◦  Templatic morphology or root-and-pattern

morphology, common in Arabic, Hebrew, and other
Semitic languages

�  Two broad classes of ways to form words from
morphemes:
◦  Inflection: the combination of a word stem with a

grammatical morpheme, usually resulting in a word of the
same class as the original tem, and usually filling some
syntactic function like agreement, and
◦  Derivation: the combination of a word stem with a

grammatical morpheme, usually resulting in a word of a
different class, often with a meaning hard to predict exactly.

72

Survey of (Mostly) English Morphology
Inflectional Morphology
�  In English, only nouns, verbs, and sometimes

adjectives can be inflected, and the number
of affixes is quite small.

�  Inflections of nouns in English:
◦  An affix marking plural,
�  cat(-s), thrush(-es), ox (oxen), mouse
(mice)

�  ibis(-es), waltz(-es), finch(-es),
box(-es), butterfly(-lies)

◦  An affix marking possessive
�  llama’s, children’s, llamas’,
Euripides’ comedies

73

Survey of (Mostly) English Morphology
Inflectional Morphology

�  Verbal inflection is more complicated than nominal inflection.
◦  English has three kinds of verbs:

�  Main verbs, eat, sleep, impeach
�  Modal verbs, can will, should
�  Primary verbs, be, have, do
◦  Morphological forms of regular verbs

stem walk merge try map

-s form walks
 merges tries maps

-ing principle walking
 merging trying mapping

Past form or –ed participle walked
 merged tried mapped

–  These regular verbs and forms are significant in the morphology of
English because of their majority and being productive.

74

Survey of (Mostly) English Morphology
Inflectional Morphology

◦ Morphological forms of irregular verbs
stem eat catch cut

-s form eats catches cuts

-ing principle eating catching cutting

Past form ate caught cut

–ed participle eaten caught cut

75

Survey of (Mostly) English Morphology
Derivational Morphology

�  Nominalization in English:
◦  The formation of new nouns, often from verbs or adjectives

Suffix Base Verb/Adjective Derived Noun
-action computerize (V) computerization

-ee appoint (V) appointee

-er kill (V) killer

-ness fuzzy (A) fuzziness

–  Adjectives derived from nouns or verbs

Suffix Base Noun/Verb Derived Adjective
-al computation (N) computational

-able embrace (V) embraceable

-less clue (A) clueless

76

Survey of (Mostly) English Morphology
 Derivational Morphology

� Derivation in English is more complex
than inflection because
◦ Generally less productive
�  A nominalizing affix like –ation can not be added to

absolutely every verb. eatation(*)

◦ There are subtle and complex meaning
differences among nominalizing suffixes. For
example, sincerity has a subtle difference in
meaning from sincereness.

77

Finite-State Morphological Parsing

�  Parsing English morphology

Input Morphological parsed output
cats
cat
cities
geese
goose
gooses
merging
caught

cat +N +PL
cat +N +SG

city +N +PL

goose +N +PL

(goose +N +SG) or (goose +V)
goose +V +3SG

merge +V +PRES-PART

(caught +V +PAST-PART) or (catch +V +PAST)

78

Finite-State Morphological Parsing
�  We need at least the following to build a

morphological parser:
1.  Lexicon: the list of stems and affixes, together with

basic information about them (Noun stem or Verb
stem, etc.)

2. Morphotactics: the model of morpheme ordering
that explains which classes of morphemes can follow
other classes of morphemes inside a word. E.g., the
rule that English plural morpheme follows the noun
rather than preceding it.

3.  Orthographic rules: these spelling rules are used to
model the changes that occur in a word, usually
when two morphemes combine (e.g., the y→ie
spelling rule changes city + -s to cities).

79

Finite-State Morphological Parsing
The Lexicon and Morphotactics
�  A lexicon is a repository for words.
◦  The simplest one would consist of an explicit list of every word of the language.

Incovenient or impossible!

◦  Computational lexicons are usually structured with
�  a list of each of the stems and
�  Affixes of the language together with a representation of morphotactics telling us how they

can fit together.

◦  The most common way of modeling morphotactics is the finite-state automaton.

Reg-noun Irreg-pl-noun Irreg-sg-noun plural

fox
fat
fog
fardvark

geese
sheep
Mice

goose
sheep
mouse

-s

An FSA for English nominal inflection

80

Finite-State Morphological Parsing
The Lexicon and Morphotactics

Reg-verb-stem Irreg-verb-stem Irreg-past-verb past Past-part Pres-part 3sg

walk
fry
talk
impeach

cut
speak
sing
sang
spoken

caught
ate
eaten

-ed -ed -ing -s

An FSA for English verbal inflection

81

Finite-State Morphological Parsing
The Lexicon and Morphotactics

�  English derivational morphology is more complex than
English inflectional morphology, and so automata of
modeling English derivation tends to be quite complex.
◦  Some even based on CFG

�  A small part of morphosyntactics of English adjectives

big, bigger, biggest
cool, cooler, coolest, coolly
red, redder, reddest
clear, clearer, clearest, clearly, unclear, unclearly
happy, happier, happiest, happily
unhappy, unhappier, unhappiest, unhappily
real, unreal, really An FSA for a fragment of English adjective

Morphology #1

82

Finite-State Morphological Parsing

An FSA for a fragment of English adjective
Morphology #2

•  The FSA#1 recognizes all the listed adjectives, and ungrammatical forms
like unbig, redly, and realest.

•  Thus #1 is revised to become #2.
•  The complexity is expected from English derivation.

83

Finite-State Morphological Parsing

An FSA for another fragment of English derivational morphology

84

Finite-State Morphological Parsing

�  We can now use these FSAs to
solve the problem of
morphological recognition:
◦  Determining whether an input

string of letters makes up a
legitimate English word or not

◦  We do this by taking the
morphotactic FSAs, and plugging in
each “sub-lexicon” into the FSA.

◦  The resulting FSA can then be
defined as the level of the individual
letter.

85

Finite-State Morphological Parsing
Morphological Parsing with FST

�  Given the input, for example, cats, we would like to produce cat +N +PL.
�  Two-level morphology, by Koskenniemi (1983)
◦  Representing a word as a correspondence between a lexical level

�  Representing a simple concatenation of morphemes making up a word, and

◦  The surface level
�  Representing the actual spelling of the final word.

�  Morphological parsing is implemented by building mapping rules that maps
letter sequences like cats on the surface level into morpheme and features
sequence like cat +N +PL on the lexical level.

86

Finite-State Morphological Parsing
Morphological Parsing with FST

�  The automaton we use for performing the mapping
between these two levels is the finite-state
transducer or FST.
◦  A transducer maps between one set of symbols and another;
◦  An FST does this via a finite automaton.

�  Thus an FST can be seen as a two-tape automaton
which recognizes or generates pairs of strings.

�  The FST has a more general function than an FSA:
◦  An FSA defines a formal language
◦  An FST defines a relation between sets of strings.

�  Another view of an FST:
◦  A machine reads one string and generates another.

87

Finite-State Morphological Parsing
Morphological Parsing with FST
�  FST as recognizer:
◦  a transducer that takes a pair of strings as input and

output accept if the string-pair is in the string-pair
language, and a reject if it is not.

�  FST as generator:
◦  a machine that outputs pairs of strings of the

language. Thus the output is a yes or no, and a pair of
output strings.

�  FST as transducer:
◦  A machine that reads a string and outputs another

string.
�  FST as set relater:
◦  A machine that computes relation between sets.

88

Finite-State Morphological Parsing
Morphological Parsing with FST
�  A formal definition of FST (based on the Mealy

machine extension to a simple FSA):
◦  Q: a finite set of N states q0, q1,…, qN
◦  Σ: a finite alphabet of complex symbols. Each complex

symbol is composed of an input-output pair i : o; one
symbol I from an input alphabet I, and one symbol o
from an output alphabet O, thus Σ ⊆ I×O. I and O may
each also include the epsilon symbol ε.
◦  q0: the start state
◦  F: the set of final states, F ⊆ Q
◦  δ(q, i:o): the transition function or transition matrix

between states. Given a state q ∈ Q and complex
symbol i:o ∈ Σ, δ(q, i:o) returns a new state q’ ∈ Q. δ
is thus a relation from Q × Σ to Q.

89

Finite-State Morphological Parsing
Morphological Parsing with FST

�  FSAs are isomorphic to regular languages, FSTs are isomorphic
to regular relations.

�  Regular relations are sets of pairs of strings, a natural extension
of the regular language, which are sets of strings.

�  FSTs are closed under union, but generally they are not closed
under difference, complementation, and intersection.

�  Two useful closure properties of FSTs:
◦  Inversion: If T maps from I to O, then the inverse of T, T-1 maps

from O to I.
◦  Composition: If T1 is a transducer from I1 to O1 and T2 a transducer

from I2 to O2, then T1 。 T2 maps from I1 to O2

90

Finite-State Morphological Parsing
 Morphological Parsing with FST

�  Inversion is useful because it makes it easy to convert a FST-as-parser into an FST-
as-generator.

�  Composition is useful because it allows us to take two transducers than run in
series and replace them with one complex transducer.
◦  T1。T2(S) = T2(T1(S))

Reg-noun Irreg-pl-noun Irreg-sg-noun

fox
fat
fog
aardvark

g o:e o:e s e
sheep
m o:i u:εs:c e

goose
sheep
mouse

A transducer for English nominal
number inflection Tnum

91

Finite-State Morphological Parsing
 Morphological Parsing with FST

The transducer Tstems, which maps roots to their root-class

92

Finite-State Morphological Parsing
 Morphological Parsing with FST

A fleshed-out English nominal inflection FST
Tlex = Tnum。Tstems

^: morpheme boundary
#: word boundary

93

Finite-State Morphological Parsing
 Orthographic Rules and FSTs

�  Spelling rules (or orthographic rules)

Name Description of Rule Example

Consonant doubling
E deletion
E insertion
Y replacement
K insertion

1-letter consonant doubled before -ing/-ed
Silent e dropped before -ing and -ed
e added after -s, -z, -x, -ch, -sh, before -s
-y changes to -ie before -s, -i before -ed
Verb ending with vowel + -c add -k

beg/begging
make/making
watch/watches
try/tries
panic/panicked

–  These spelling changes can be thought as taking as input a simple concatenation of
morphemes and producing as output a slightly-modified concatenation of
morphemes.

94

Finite-State Morphological Parsing
 Orthographic Rules and FSTs

�  “insert an e on the surface tape just when the lexical tape has a
morpheme ending in x (or z, etc) and the next morphemes is -s”

 x
ε→ e/ s s#
 z	

a→ b / c d

•  “rewrite a to b when it occurs between c and d”

95

Finite-State Morphological Parsing
 Orthographic Rules and FSTs

The transducer for the E-insertion rule

96

Combining FST Lexicon and Rules

97

Combining FST Lexicon and Rules

98

Combining FST Lexicon and Rules

�  The power of FSTs is that the exact same cascade
with the same state sequences is used
◦  when machine is generating the surface form from the

lexical tape, or
◦  When it is parsing the lexical tape from the surface tape.

�  Parsing can be slightly more complicated than
generation, because of the problem of ambiguity.
◦  For example, foxes could be fox +V +3SG as well as
fox +N +PL

99

Lexicon-Free FSTs: the Porter Stemmer

�  Information retrieval
�  One of the mostly widely used stemming algorithms is

the simple and efficient Porter (1980) algorithm, which
is based on a series of simple cascaded rewrite rules.
◦  ATIONAL → ATE (e.g., relational → relate)
◦  ING → ε if stem contains vowel (e.g., motoring → motor)

�  Problem:
◦  Not perfect: error of commision, omission

�  Experiments have been made
◦  Some improvement with smaller documents
◦  Any improvement is quite small	

