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Markov Models

e Set of states: {5,855, Sy |

* Process moves from one state to another generating a
sequence of states : S198i90eeesSipsees

* Markov chain property: probability of each subsequent state

depends only on what was the previous state:

P(Sy | 815812005 Si1) = P(Sy [ Sy1)
* To define Markov model, the following probabilities have to be

specified: transition probabilities a; = P(s;[5;) and initial
probabilities 77, = P(s,)



Example of Markov Model
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*Two states: 'Rain’ and ‘Dry’ .
« Transition probabilities: P( ‘Rain’ | ‘Rain’ )=O.3,P( ‘Dry’ | ‘Rain’ )=O.7,
P( ‘Rain’ | ‘Dry’ )=02,P( ‘Dry’ | ‘Dry’ )=038

* Initial probabilities: say P( "Rain’ )=O.4 : P( ‘Dry’ )=O.6 :



Calculation of sequence probability

* By Markov chain property, probability of state sequence can be found by the
formula:

P(S;1,8:550 0085 ) = P(S;y | 811581050085 )P(S115 8105005 851)
= P8y | S )P (831581050 85g) = -

= P(Sik |Sik—1)P(Sik—1 |Sik—2)°°'P(Si2 |Si1)P(Sil)

» Suppose we want to calculate a probability of a sequence of states in our
example, { ‘Dry’ ,” Dry ,” Rain’ ,Rain’ }.

P({ ‘Dry’ ) Dry’ ) Rain’ ,Rain’ }) -
P( ‘Rain" |" Rain" ) P( “Rain’ | Dry’ ) P( ‘Dry’ | Dry’ )
P(‘Dw’)=
= 0.3%0.2*0.8%0.6



Hidden Markov models

* Set of states: {S19S29 .. .,SN}

*Process moves from one state to another generatinga sequence of states :
Sil,Sizjo . .,Sik,. o o

* Markov chain property: probability of each subsequent state depends only on

what was the previous state:

P(Sy 81585055 Si1) = P8y [ S51)
* States are not visible, but each state randomly generates one of M
observations (or visible states)
Vi VayeonsVy

* To define hidden Markov model, the following probabilities have to be
specified: matrix of transition probabilities A= (aij), a,— P(Si | Sj) , matrix
of observation probabilities B=(bi (Vm)), bi(Vm) — P(le Si) and a
vector of initial probabilities TE=(TEi), v, — P(Si) . Model is represented

sy M=(A, B, ).
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Hidden Markov models

* Set of states: {S19S29 .. .,SN}

*Process moves from one state to another generatinga sequence of states :
Sil,Sizjo . .,Sik,. o o

* Markov chain property: probability of each subsequent state depends only on

what was the previous state:
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Vi VayeonsVy
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sy M=(A, B, ).



Example of Hidden Markov Model

*Two states: ‘Low’ and ‘High’ atmospheric pressure.
 Two observations : ‘Rain’ and ‘Dry’ .

« Transition probabilities: P ‘Low’ | ‘Low’ )=0.3,P( ‘High’ | “Low’ )=07,
P( ‘Low | ‘High" )=02,P( ‘High" | ‘High" )=0s8

. Observation probabilities : P(' ‘Rain’ | “Low’ )=06,P( ‘Dry’ | ‘Low’ )=04,
P( ‘Rain’ | ‘High' )=04,P( ‘Dry’ | ‘High" )=03.

* Initial probabilities: say P( ‘Low’ )=0.4 : P( "High’ )=O.6 :



What is an HMM?
* Graphical Model

e Circles indicate states

* Arrows indicate probabilistic dependencies
between states



What is an HMM?

» Green circles are hidden states

» Dependent only on the previous state

» “The past is independent of the future given the
present.”



What is an HMM?

° o0 o

O O O O C

* Purple nodes are observed states

* Dependent only on their corresponding hidden
state



HMM Formalism

¢ 6o

« {S,K,TI, A, B)
» S:{s|...sy} are the values for the hidden states

» K:{k,...ky } are the values for the observations



HMM Formalism

« {S,K,TI, A, B)

» I1={m } are the initial state probabilities

* A = {a;} are the state transition probabilities

» B ={b,} are the observation state probabilities



Inference in an HMM

» Compute the probability of a given observation
sequence

» Given an observation sequence, compute the
most likely hidden state sequence

» Given an observation sequence and set of
possible models, which model most closely fits
the data?



Decoding

Given an observation sequence and a model,
compute the probability of the observation

sequence
O =(o,...0;), u =(A4,B,1II)
Compute P(O | u)



Decoding

PR

P(O|X,u)=b_b.

X101 22




Decoding

IH I
o 0 o
P(O|X,u)=b_b.

X101 22

X701
P(X“u) .77/’161 XX 2a XpX3 axT—le




Decoding

IH I
o 0 o
P(O|X,u)=b_b.

X101 22

P(X|w)=na, a, . a,

P(O, X | u) = P(O\X WP(X | 1)




Decoding

IH I
® © ©
P(O|X,u)=b,, b, .b

P(X|u)=na,. a, ax”x
P(O.X | ) = P(O| X 1)P(X | 0

P(O|u) =" P(O| X, )P(X | u)




It

P(O“M)— Eﬂlbllnaxxl Xt+10¢41

X -xr




Forward Procedure
O ©& OO ©
O & O &©® ©

* Special structure gives us an efficient solution
using dynamic programming.

* Intuition: Probability of the first t observations is
the same for all possible t+1 length state
sequences.

* Define: o, (t) = P(o,..0,,x, =1 | u)




Forward Procedure

a(t+1)

= P(Ol...OH_lale = ])

= P(0,...0,,, | x,,, = )P(x,,, = j)
= P(Ol'“ot | Xl = j)P(0t+1 | Xl = j)P(le - J)
= P(01-°~0 X = j)P(0t+1 |xt+1 = ])

197V t+1



Forward Procedure

a(t+1)

= P(01'°'Ot+19 t+1 ])

= P(Ol... 0, 4 |Xt+1 )P(xt+1 = ])

= P(Ol“' |xt+1 = ])P(0t+1 |xt+1 = j)P(xt+1 = ])
= P(01-~~0pxt+l j)P(0t+1 |xt+1 = ])



Forward Procedure

a(t+1)

= P(Ol...OHlale = ])

= P(o,...0,,, | x,., = ))P(x,., = J)

= P(Ol“‘Ot | Xiwl = j)P(OHl | Xiwl = j)P(le — ])

= P(01-°~0 X = j)P(0t+1 |xt+1 = ])

197V t+1



Forward Procedure

a(t+1)

= P(01'°'Ot+19'xl‘+1 = ])
= P(o,...0,,, | x,., = ))P(x,., = J)
= P(0,...0,| x,,, = j)P(o,,, | x,,, = )P(x,,, = J)

= P(Ol-"O X = j)P(0t+1 |xt+1 = ])

o7V t+1




Forward Procedure

o 6ole

= EP(OI'"Ot"xt = ia“xt+1 = j)P(OH.l |xt+1 = ])
i=l..N

) EP(OI'”ON'XHI = J | xt = Z)P(xt = i)P(OHI |xt+1 - ])
i=l..N

= EP(OI"’Otﬂxt = i)P(le - J | Xy = i)P(OHI |xt+1 - ])
i=l...N

= 2 of (t)aijbjom

i=l...N




Forward Procedure

o 6als

= EP(OI”’Ot’xt = iaxt+1 = j)P(0t+1 |xt+1 = J)
i=1...N

) EP(01°"0t9xt+l = J | xt = Z)P(xt = i)P(OHI |xt+1 - J)
i=1...N

= EP(OI"’Otﬂxt = i)P(le - J | Xy = i)P(OHI |xt+1 - ])
i=l...N

= 2 of (t)aijbjom

i=l...N




Forward Procedure

o 6als

= EP(OI”’Ot"xt = iaxt+1 = j)P(0t+1 |xt+1 = J)
i=1...N

) EP(OI”'ON'XHI = J | xt = Z)P(xt = i)P(OHI |xt+1 - ])
i=l..N

= EP(OI...Ot,xt = i)P(le = ] | Xy = i)P(OHI |xt+1 = ])
i=1l..N

= 2 of (t)aijbjom

i=l...N




Forward Procedure

o 6als

= EP(OI”’Ot’xt = iaxt+1 = j)P(0t+1 |xt+1 = J)
i=1...N

) EP(OI'”ON'XHI = J | xt = Z)P(xt = i)P(OHI |xt+1 - ])
i=l..N

= EP(OI"’Otﬂxt = i)P(le - J | Xy = i)P(OHI |xt+1 - ])

i=1...N
= 2 ai (t)aijbjOtH
i=1...N




Backward Procedure

o old

L.(T+1)=1
ﬂi(t) = P(Ot“‘OT ‘xt = l)

BO= Dab, b+

Probability of the rest
of the states given the
first state




Decoding Solution

|
2 » L
\\‘;

P(Ofu) = 20@- ())B,(1)  Combination




Best State Sequence

* Find the state sequence that best explains the observations

* Viterbi algorithm

" arg m)?XP(X | O)



Viterbi Algorithm

PP

é(t) maXP(xl X,_150y..0, 1, X, = J,0,)

e Xp]

The state sequence which maximizes the
probability of seeing the observations to time
t-1, landing in state j, and seeing the
observation at time t




Viterbi Algorithm

I—»
© ®© 0 &© O
0,(t) = max P(x,...x,;,0,...0,, X, = J,0,)

Xp e Xy

0,(t+1)= maX(S (t)a.b

Y IO Recursive

Computation

Y (t+1)= arg max 0.(t)a, b

I~ JOu




Viterbi Algorithm

PP

Xr = argmax o,(T)

Compute the most

A likely state sequence
X, = Z/JX | (t+1) by working

t
backwards

P()A( ) =argmax o,(T)




Parameter Estimation

* Given an observation sequence, find the model
that is most likely to produce that sequence.

* No analytic method

* Given a model and observation sequence, update
the model parameters to better fit the
observations.



Parameter Estimation

pt(iaj)=

a,(t)a,b, p(t+])

2 “ ), (1)

m

Probability of
traversing an arc

AOEEWAN)

j<T..N

Probability of bei
In state |

ng



Parameter Estimation

Now we can
compute the new
estimates of the
model parameters.




HMM Applications
» Generating parameters for n-gram models

» Tagging speech
» Speech recognition



The Most Important Thing

We can use the special structure of this
model to do a lot of neat math and solve
problems that are otherwise not solvable.
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Example of Markov Model

0.3 0.7

OHRC)

0.2 0.8
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Calculation of sequence probability

* By Markov chain property, probability of state sequence can be found by the
formula:
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Hidden Markov models

* Set of states: {S19S29 .. .,SN}

*Process moves from one state to another generatinga sequence of states :
Sil,Sizjo . .,Sik,. o o

* Markov chain property: probability of each subsequent state depends only on
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Vi VayeonsVy

* To define hidden Markov model, the following probabilities have to be
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vector of initial probabilities TE=(TEi), v, — P(Si) . Model is represented
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Example of Hidden Markov Model

*Two states: ‘Low’ and ‘High’ atmospheric pressure.
 Two observations : ‘Rain’ and ‘Dry’ .

« Transition probabilities: P ‘Low’ | ‘Low’ )=0.3,P( ‘High’ | “Low’ )=07,
P( ‘Low | ‘High" )=02,P( ‘High" | ‘High" )=0s8

. Observation probabilities : P(' ‘Rain’ | “Low’ )=06,P( ‘Dry’ | ‘Low’ )=04,
P( ‘Rain’ | ‘High' )=04,P( ‘Dry’ | ‘High" )=03.

* Initial probabilities: say P( ‘Low’ )=0.4 : P( "High’ )=O.6 :



Calculation of observation sequence
probability

*Suppose we want to calculate a probability of a sequence of observations in our
example, { ‘Dry’ ,” Rain’ }.
*Consider all possible hidden state sequences:

P({ ‘Dry’ ,” Rain’ }) — P({ ‘Dry’ ,” Rain’ },{ ‘Low” ,” Low’ }) +
P({ ‘Dry ;' Rain” },{ ‘Low’ , High" }) + P({ ‘Dry’ . Rain’ },
{ ‘High" ) Low’ }) T P(t ‘Ory  Rain” },{ “High” , High' })

where first term is :

P({ ‘Dry’ ,” Rain’ },{ ‘Low’ ,” Low’ })=

P({ ‘Dry’ ,” Rain’ }|{ ‘Low’ ,” Low’ }) P({ ‘Low’ . Low’ }) —
P( ory 1 tow )P( “Rain" | tow’ ) P( ‘tow’ )P( “Low’ |' Low)
= 0.4%0.4*0.6%0.4%0.3



Main issues using HMMs :

Evaluation problem. Given the HMM M=(A, B, TE) and the observation
sequence O=O| O, ... O, calculate the probability that model M has generated
sequence O

- Decoding problem. Given the HMM M=(A, B, 7T) and the observation
sequence O=O| O, ... O, calculate the most likely sequence of hidden states S; that
produced this observation sequence O

* Learning problem. Given some training observation sequences O=O| O,... Ok
and general structure of HMM (numbers of hidden and visible states), determine HMM

parameters M =(A, B, ﬂ:) that best fit training data.

O=0,...OK denotes a sequence of observations O, E{V,, ee oy Viuh



Word recognition example(|).

* Typed word recognition, assume all characters are separated.

Luleasy

» Character recognizer outputs probability of the image being particular character,
P(image|character).

a [~0.5
b | 0.03

c !
-170.005 .
o

o

0.3

Hidden state Observation



Word recognition example(2).

* Hidden states of HMM = characters.

» Observations = typed images of characters segmented from the
image V. Note that there is an infinite number of observations

» Observation probabilities = character recognizer scores.

B=(bm))=(Pm, |s,))

*Transition probabilities will be defined differently in two subsequent models.



Word recognition example(3).

* If lexicon is given, we can construct separate HMM models for each lexicon word.

Amherst (2 )—(m )= )}+(e ()~
mulo (&) )OO~

05 | 003\o4 0.6

S
'i 1]

* Here recognition of word image is equivalent to the problem of evaluating few
HMM models.
*This is an application of Evaluation problem.



Word recognition example(4).

* We can construct a single HMM for all words.

* Hidden states = all characters in the alphabet.

* Transition probabilities and initial probabilities are calculated from language model.
* Observations and observation probabilities are as before.

* Here we have to determine the best sequence of hidden states, the one that most
likely produced word image.
* This is an application of Decoding problem.



Character recognition with HMM example.

* The structure of hidden states is chosen.

00000

* Observations are feature vectors extracted from vertical slices.

* Probabilistic mapping from hidden state to feature vectors: |. use mixture of
Gaussian models
2. Quantize feature vector space.



Exercise: character recognition with HMM(|)
A A A

 The structure of hidden states: 0 e e

* Observation = number of islands in the vertical slice.

*HMM for character ‘A’

Transition probabilities: {a;}= (-

Observation probabilities: {b;}=  {

*HMM for character ‘B’

Transition probabilities: {a;}= (-

Observation probabilities: {b;}=  {



Exercise: character recognition with HMM(2)

* Suppose that after character image segmentation the following sequence of island
numbers in 4 slices was observed:
{1,3,2, 1}

* What HMM is more likely to generate this observation sequence , HMM for
‘A’ orHMMfor B’ ?



Exercise: character recognition with HMM(3)

Consider likelihood of generating given observation for each possible sequence of

hidden states:

« HMM for character ‘A’

Hidden state sequence

S|—> S~ S5,—>S;
S|=> S,—> S,—>S;

S|—> S;—> S3—>5;

« HMM for character ‘B’

Hidden state sequence

S|—> S~ S5,—>S;
S|—> S;—> 5,—>S;

S|=> S;—> S3—>5;

Transition probabilities
8*2 *)2
2*%8 *.2
2%2 % |

Transition probabilities
8*2 *)2
2*%8 *.2
2%2 % |

*

*

*

Observation probabilities
9*0*8*9 = 0
9% * 8 *9 = 0.0020736

9% * 1 *9 = 0.000324
Total = 0.0023976

Observation probabilities
9*0*2*6 = 0
9*8 * 2 * 6 = 0.0027648

9*8 * 4 * 6 = 0.006912
Total = 0.0096768



Evaluation Problem.

Evaluation problem. Given the HMM M=(A, B, TC) and the observation
sequence O=O| O, ... O, calculate the probability that model M has generated

sequence O .

» Trying to find probability of observations O=O| O, ... Ox by means of considering all

hidden state sequences (as was done in example) is impractical:
NK hidden state sequences - exponential complexity.

* Use Forward-Backward HMM algorithms for efficient calculations.

» Define the forward variable O, (i) as the joint probability of the partial observation

sequence O, O, ... O, and that the hidden state at time k is S; : Ol (i)= P(O. O,...

Ok,qk= Si)



Trellis representation of an HMM

O

= QObservations

(s)
¢
(9



Forward recursion for HMM

* |nitialization:

QL ()= P(O| ,C|.=Si) = JT, IZ)i (O|) , 1<=i<=N.

* Forward recursion:
Q. ()= P(0,0;... O Qui=S)) =
2 P(o 0,...0...q=5 qu=5)) =
> P(0,0,...0.9=5) 3, bj(0..) =
[ a.ha, ] b(0n),  1<sj<=N, 1<=k<=K-1.

* Termination:

P(o 0,..0) =2, P(0,0,... 0« qc=5) =2, 0

« Complexity :
N2K operations.



Backward recursion for HMM

* Define the forward variable Bk(i) as the joint probability of the partial observation

sequence O, O4; ... Ok given that the hidden state at time k is S; : Bk(i)= P(Ok+|

Ok+2 coe OK qk= S|)
* |nitialization:
Beiy=1 , 1<=ie=N.

» Backward recursion:
B.0= P(0. Ocs-. 04| Gi=S)) =
2 P(0..041... 04 Q=S | Q=S)) =
2 P(Ok+2 Oz eee OKlqk+|=Si) a, b, (Ok+|) -
2 Bk+|(i) d; b, (Ok+|) ; | <=j<=N, | <=k<=K-I.

e Termination:
P(Olozn- OK) =2i P(O|02... OK,q|=Si) =
2 P(o,0,...0]q=s) P(q=s) = Z, P.ob (o)




Decoding problem

*Decoding problem. Given the HMM M=(A, B, JT) and the observation

sequence O=O| O, ... O, calculate the most likely sequence of hidden states S; that
produced this observation sequence.

* We want to find the state sequence Q= g, . . . g« which maximizes P(Q | O,
;i OK) , or equivalently P(Q , 0, 0,... OK) :

* Brute force consideration of all paths takes exponential time. Use efficient Viterbi
algorithm instead.

* Define variable 6k(i) as the maximum probability of producing observation sequence
O, O, ... Oy when moving along any hidden state sequence {;. .. {.;and getting into
g=S .

0. =max P(q.... 9., Q=S , 0,0,...0))

where max is taken over all possible paths q| ces qk_| .



Viterbi algorithm (1)

* General idea:

if best path ending in ;= S; goes through ;= S; thenit  should coincide

with best path ending in qk_|= S..

: 6k(i) = max P(q| coe qk-l ’ C||<= S;, 0,0,... Ok) =
max [3, b,(0.) mxP(q.... q.=5,,0,0,...0.) ]

* To backtrack best path keep info that predecessor of S; was S..



Viterbi algorithm (2)

* |nitialization:

0, =max P(qi=s,, 0,) =, b.(0)) , 1<=i<=N.

*Forward recursion:
0.4 =max P(q.... Qu:,qQ=S,, 0,0;...0,) =
max, [3; D, (0,) max P(qi... Qu=5,,0/0,...0,) 1 =
max, [3; D, (0,) 0,,()1,  1<=j<=N, 2<=k<=kK.

*Termination: choose best path ending at time K

max; [ Ox(i) ]

* Backtrack best path.

This algorithm is similar to the forward recursion of evaluation problem, with Z replaced by
max and additional backtracking.



Learning problem (1)

*Learning problem. Given some training observation sequences O=O| O,...
Oy and general structure of HMM (numbers of hidden and visible states), determine
HMM parameters M=(A, B, TE) that best fit training data, that is maximizes

P(O M)

* There is no algorithm producing optimal parameter values.

* Use iterative expectation-maximization algorithm to find local maximum of P(O |

M) - Baum-Welch algorithm.



Learning problem (2)

* If training data has information about sequence of hidden states (as in word
recognition example), then use maximum likelihood estimation of parameters:

a,= P(s/| s) =

Number of transitions from state S; to state S,

Number of transitions out of state S,

Number of times observation V., occurs in state S,

b(v.)= P(v.| s)=

Number of times in state S,



Baum-Welch algorithm

General idea:

Expected number of transitions from state S, to state S,

a,= P(s/| s) =

Expected number of transitions out of state S,

Expected number of times observation YV, occurs in state S,

b(v.)= P(v.| s)=

Expected number of times in state S,

I, — P(Si) — Expected frequency in state S, at time k=1.



Baum-Welch algorithm: expectation step(|)

* Define variable %k(i,j) as the probability of being in state S; at time k and in state

S, at time k+1, given the observation sequence O, O,... O.

%k(i’j)z P(qk= S, CI|<+|= S, | 0 0,... OK)

% i) P(qk= Si » Q+1— S , 0] Oz ... Ok)
< P(o| 0; ... 0y)

P(q= si,010;...00) 3, b(0w) P(oysr - 0k | Qs 1= S;)
P(o) 0;...0y4)

a’k(i) aii bi (Ok+l) ﬁkﬂ(i)
22 o) a; b (o) B




Baum-Welch algorithm: expectation step(2)

* Define variable Y, (i) as the probability of being in state S; at time k, given the

observation sequence O, O, ... O.

Yk(i)z P(qk= S, | 0 0,... OK)

V.= P(q=si, 0, 0;7...04) _ Ol (i) ﬁk(i)
‘ P(o| 0;...04) 2. 0L0) P




Baum-Welch algorithm: expectation step(3)

*We calculated %k(i,j) = P(qk= S, 1= S, | 0 0,... OK)
and  Y.0)= P(q=s, |0,0;... 0\)

* Expected number of transitions from state S; to state S, =

= Zk %k(i’j)

« Expected number of transitions out of state S; = Zk Y. (i)

* Expected number of times observation ¥y, occurs in state S =
= Zk Y\(i) . k is such that O =V

» Expected frequency in state Sj at time k=1: Y (i) .



Baum-Welch algorithm: maximization step

Expected number of transitions from state S; to state S; Zk %k(i,j)

2. Y

aij e Expected number of transitions out of state S

b __ Expected number of times observation Vi, occurs in state S; __ Zk %k(i’j)
i(Vm) — Expected number of times in state S; _ Zk o= v Y (i)
kT Ym |k

I, — (Expected frequency in state S, at time k=1) — Y\ ).



The Noisy Channel Model

source noisy gu.es.s at
¢ sentence  DECODER original
Sentenee ?Alice was beginning to get.) Sentence

?Every happy family...

?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove..

If music be the

food of love... — — If music be the

food of love...

* Search through space of all possible
sentences.

* Pick the one that is most probable given
the waveform.



The Noisy Channel Model (Il)

* What is the most likely sentence out of
all sentences in the language L given some
acoustic input O?

 Treat acoustic input O as sequence of
individual observations
> O = 0,,05,03...,0,

» Define a sentence as a sequence of
words:

° W = W[ ,W5,W3,..., W,



Noisy Channel Model (lll)

* Probabilistic implication: Pick the highest prob S:
W = argmax P(W | O)

welL

* We can use Bayes rule to rewrite this:

W - argmax P(OIW)P(W)
WeL P(O)

e Since denominator is the same for each candidate

sentenceAW we can |%|gore it for the argmax:
=argmax P(OIW)P(W)

wWelL



Noisy channel model

likelihood prior

: J

W =argmax P(OIW)P(W)

WelL



The noisy channel model

* lgnoring the denominator leaves us with
two factors: P(Source) and P(Signal|
Source

source noisy gu.es.s at
¢ sentence  DECODER original
Sentenee ?Alice was beginning to get.) Sentence

?Every happy family...

?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove..

If music be the

food of love... — — If music be the

food of love...




Speech Architecture meets Noisy

Channel
P(OIW)

Acoustic Model
+ Lexicon

Feature
Extraction



HMMs for speech




Phones are not homogeneous!

5000+

0.937203

oA shibihobihidids
0.48152 ay



Each phone has 3 subphones




Resulting HMM word model for
“SiX”




HMMs more formally

* Markov chains
* A kind of weighted finite-state automaton

O=q1q2...9N a set of states

A =ap1a02...a,1...ay,  atransition probability matrix A, each a;; rep-
resenting the probability of moving from state i
n

to state j, s.t. ijla,-j =1 Vi

q0-49end a special start and end state which are not asso-
ciated with observations.

Markov Assumption: P(q;|q1...qi—1) = P(qi|qi—1)



HMMs more formally

e Markov chains
e A kind of wecjlghted finite-state automaton




Another Markov chain




Another view of Markov chains

M =T.M>.....My an initial probability distribution over states. T; 1s the
probability that the Markov chain will start in state 7. Some

states j may have m; = 0, meaning that they cannot be maitial
states. Also, » i T = 1

QA ={q.,qy...} aset QA C Q of legal accepting states &




An example with numbers:

* What is probability of:
> Hot hot hot hot
> Cold hot cold hot



Q=q192...9n
A:allalz...anl ---ann

O =o010>..
B = bi(O{)
q90,9F

LIt ddac Mo oo, MM AL

.OT

a set of N states

a transition probability matrix A, each a;; rep-

resenting the probability of moving from state i
- n R \\_/ -

to state j,s.t. 37y a;; =1 Vi

a sequence of T observations, each one drawn

from a vocabulary V = vy, va, ..., vy.

A sequence of observation likelihoods:, also
called emission probabilities, each expressing
the probability of an observation o, being gen-
erated from a state 1.

a special start state and end (final) state which
are not associated with observations, together
with transition probabilities agag»..ag,, out of the
start state and a1ra>F...a,F 1nto the end state.



Hidden Markov Models

Markov Assumption: P(q;|q1...qi—1) = P(qilqi—_1)

Output Independence Assumption: P(0;|q;...qi,....qn.01....,0i,...,0y



Hidden Markov Models

» Bakis network Ergodic (fully-connected)
network




The Jason Eisner task

e You are a climatologist in 2799 studying the
history of global warming

e YOU can’ tfind records of the weather in
Baltimore for summer 2006

 But you do find Jason Eisner’ s diary

* Which records how many ice creams he ate each
day.

e Can we use this to figure out the weather?

> Given a sequence of observations O,
each observation an integer = number of ice creams eaten

Figure out correct hidden sequence Q of weather states (H
or C) which caused Jason to eat the ice cream



4]

2
)]
) I=
)

P(1 | COLD
P2 | COLD
P3| COLD

|

1

|

H

P(1 | HOT)
P(2 | HOT)
P(3 | HOT)

|




HMMs more formally

* Three fundamental problems
> Jack Ferguson at IDA in the 1960s

|) Given a specific HMM, determine likelihood
of observation sequence.

2) Given an observation sequence and an
HMM, discover the best (most probable)
hidden state sequence

3) Given only an observation sequence, learn
the HMM parameters (A, B matrix)



The Three Basic Problems for HMMs

* Problem | (Evaluation): Given the observation
sequence O=(0,0,...07), and an HMM model ® = (A,B),
how do we efficiently compute P(O| @), the probability
of the observation sequence, given the model

* Problem 2 (Decoding): Given the observation sequence
O=(0,0,...01),and an HMM model ® = (A,B), how do
we choose a corresponding state sequence Q=(q,q,...
q;) that is optimal in some sense (i.e., best explains the
observations)

* Problem 3 (Learning): How do we adjust the model
parameters @ = (A,B) to maximize P(O| ® )?



Problem |: computing the

observation likelihood

Computing Likelihood: Given an HMM A = (A,B) and an observation
sequence O, determine the likelihood P(O|A).

* Given the following HMM:

[P1 | HO ] [ ] [P(1 ICOLD)] [5]
P2 | HO P21 coLD) |=] 4
P(3 | HOT) paicop) | | 1

* How likely is the sequence 3 | 3?




How to compute likelihood

e For a Markov chain, we just follow the
states 3 | 3 and multiply the probabilities

e But for an HMM, we don’ t know what
the states are!

 So let’ s start with a simpler situation.
e Computing the observation likelihood for

a given hidden state sequence

o Suppose we knew the weather and wanted to
predict how much ice cream Jason would eat.

>le. P(313|HHC)



Computing likelihood for | given
hidden state sequence

P(0|Q) HP 0i|qi) ><HP qilgi-1)

P(3 1 3]hot hot cold) = P(hot|start) x P(hot|hot) x P(cold|hot)
x P(3|hot) x P(1|hot) x P(3|cold)




Computing total likelihood of 3 | 3

* We would need to sum over
> Hot hot cold
> Hot hot hot
> Hot cold hot

o

* How many possible hidden state sequences are
there for this sequence!?

e How about in general for an HMM with N
hidden states and a sequence of T observations!?
o NT

» So we can’ t just do separate computation for
each hidden state sequence.




Instead: the Forward algorithm

* A kind of dynamic programming algorithm

o Uses a table to store intermediate values

* |dea:
> Compute the likelihood of the observation sequence
> By summing over all possible hidden state sequences

> But doing this efficiently

By folding all the sequences into a single trellis



A

9

q4

9

. end |

The Forward Trellis

0,(2)=.32".014 + .02".08 = .00608

P(HIH) *

P(1IH)
7*.2 '

(7/0} \\ /,/’
(\\\'\ oy(1) = 3215 + 02", 0= 054

N
’ )
end

.

e

.
4 '
+ stan
\ ’

o
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The forward algorithm

 Each cell of the forward algorithm trellis
alpha,(j)
> Represents the probability of being in state |
> After seeing the first t observations

o(j)=P(o1,02...01,q; = j|\)

probabilty



O—1(7)

bj(Ot.)

We update each cell

the previous forward path probability from the previous time step
the transition probability from previous state ¢; to current state ¢

the state observation likelihood of the observation symbol o; given
the current state ; %™ o4(N)

(o @, wWrZa0an@
: T

’ M
’ '
s q | !

\
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The Forward Recursion

1. Initialization:

~

2. Recursion (since states 0 and F are non-emitting):
N |
- Zo‘f—l(i)aijbj(or); l1<j<N,1<t<T

3. Termination:
N

P(O|A) = 0r(qF) zar



The Forward Algorithm

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[{N+2,T]

for each state s from 1 to N do :imtialization step
forward[s,1]<—aqg s * bs(01)
for each time step 7 from 2 to 7 do ;recursion step

for each state sfrom 1 to N d}(\)}
forward([s,t] — Z forward[s',t — 1] * as s * bs(ot)
=1

N
forward[qF  T]— Z forward[s,T| * asgy ; termination step

s=1
return forward(qr ,T]



Decoding

* Given an observation sequence
313

e And an HMM

e The task of the decoder
> To find the best hidden state sequence

» Given the observation sequence O=(0,0,...
o7), and an HMM model ® = (A,B), how do
we choose a corresponding state sequence
Q=(q,q,.--q7) that is optimal in some sense
(i.e., best explains the observations)



Decoding
e One possibility:

> For each hidden state sequence
HHH, HHC, HCH,
> Run the forward algorithm to compute P(D |

O)
* Why not!?
o NT
* Instead:
> The Viterbi algorithm
° |s again a dynamic programming algorithm
> Uses a similar trellis to the Forward algorithm



aF {end | ! end
v,(2)=.32
s P(HIH) * P(
a2 Lo A7 7*2
- C//v’/.
-3 = (7/0}
D
&) \a)
& vy1)=.02 Yv\“
D » Wo L 2
s 3 A\
a- s & @ P(CIC) * P(1IC)
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The Viterbi trellis
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Viterbi intuition

* Process observation sequence left to
right
e Filline out the trellis
vi(i) = P(q0,q1...Gt—1,01,02 ...0:,Gr = i|\)

N
vi(j) = maxvi—1(i) aij bj(or)

1=
v:_1(7) the previous Viterbi path probability from the previous time step
ai; the transition probability from previous state g; to current state g;

bj(o;)  the state observation likelihood of the observation symbol o; given
the current state



Viterhi Alocarithm

function VITERBI(observations of len T,state-graph of len N) returns best-path

create a path probability matrix viterbif[N+2,T]

for each state s from 1 to N do :initialization step
viterbi[s,1]—ag s * bs(o1)
backpointer[s,1]—0

for each time step 7 from 2 to 7 do ;recursion step

for each state s from 1 to N do

: N o :
viterbl[s,t]<—nsllax viterbi[s',t — 1] * ay 5 * bs(or)
=] )

. N o
backpointer[s,t] — argmax viterbi[s';t — 1] * ay g

s'=1
: : N . : v
viterbi[qr , T]«— max viterbi[s,T| * asg; ; termination step
=1
: N . . .
backpointer[qr . T]— argmax viterbi[s,T| * asg; ; termination step
s=1

return the backtrace path by following backpointers to states back in time from
backpointer[qr ,T]



end |
\ s
R

{end )

Viterbi backtrace

’

8
¢ end |
i

v,(1) = max(.32*.15,.02*:30) = .048
P - s e '
4, Vars § ¢ .
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Viterbi Recursion

1. Imitialization:

vi(j) = aojbjlo1) 1<j<N
br(j) = 0

2. Recursion (recall states 0 and gF are non-emitting):

v(j) = n_{ng,_l(i)a,-jbj(ot); l<j<N,1<tr<T

 —

b, (j) = Mgﬁlul*,_l(i)aijbj(ot); l1<j<N,1<t<T
i=1

3. Termination:

N _
max vr (i) * ai F

=

N
The start of backtrace: ¢+ =bir(qr) = argmax vr(i)*a;F

i=1

The best score: P = v¢(qF)



Why “Dynamic Programming”

“I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision
processes. An interesting question is, Where did the name, dynamic programming, come from?
The 1950s were not good years for mathematical research. We had a very interesting gentleman in
Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear
and hatred of the word, research. I’ m not using the term lightly; I’ m using it precisely. His face
would suffuse, he would turn red, and he would get violent if people used the term, research, in his
presence. You can imagine how he felt, then, about the term, mathematical. The RAND Corporation
was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, | felt |
had to do something to shield Wilson and the Air Force from the fact that | was really doing
mathematics inside the RAND Corporation. What title, what name, could | choose? In the first
place | was interested in planning, in decision making, in thinking. But planning, is not a good
word for various reasons. | decided therefore to use the word, “programming” | wanted to get
across the idea that this was dynamic, this was multistage, this was time-varying | thought, lets kill
two birds with one stone. Lets take a word that has an absolutely precise meaning, namely
dynamic, in the classical physical sense. It also has a very interesting property as an adjective,
and that is its impossible to use the word, dynamic, in a pejorative sense. Try thinking of some
combination that will possibly give it a pejorative meaning. Its impossible. Thus, | thought dynamic
programming was a good name. It was something not even a Congressman could object to. So |
used it as an umbrella for my activities.” Richard Bellman, “Eye of the Hurrican: an autobiography”
1984.

Thanks to Chen, Picheny, Eide, Nock



HMMs for Speech

» We haven’ t yet shown how to learn the
A and B matrices for HMMs; we’ |l do
that later today or possibly on Monday

» But let’ s return to think about speech



Reminder: a word looks like this:

Q=q192...9n a set of states corresponding to subphones

A =ap1ap2...ay)...a,, atransition probability matrix A, each a;; rep-
resenting the probability for each subphone of
taking a self-loop or going to the next subphone.
Together, Q and A implement a pronunciation
lexicon, an HMM state graph structure for each
word that the system 1s capable of recognizing.

B = b;(0;) A set of observation likelihoods:, also called
emission probabilities, each expressing the
probability of a cepstral feature vector (observa-
tion o;) being generated from subphone state i.



HMM for digit recognition task

Lexicon
one wahn
two tuw
three thriy
four  faor
five  fayv Phone HMM
Six sihks

seven sehvaxn
eight eyt O O O

2010 2iyrow OO0 OO

oh ow




The Evaluation (forward) problem
for speech

e The observation sequence O is a series of
MFCC vectors

* The hidden states W are the phones and
words

* For a given phone/word string WV, our job
is to evaluate P(O|W)

* Intuition: how likely is the input to have
been generated by just that word string

\'A%



Evaluation for speech: Summing
over all different paths!
efayayayayvvvy
effayayayayvvy
effffayayayayv
effayayayayayayv
effayayayayayayayayv
effayvvvvvvy



The forward lattice for “five”




The forward trellis for

“five”

\Y% 0 0 |0.008|0.0093| 0.0114 | 0.00703 | 0.00345 | 0.00306 | 0.00206 | 0.00117
AY 0 0.04 | 0.054| 0.0664 | 0.0355 0.016 | 0.00676 | 0.00208 | 0.000532 | 0.000109
F 0.8 | 0.32 | 0.112] 0.0224 | 0.00448 | 0.000896 | 0.000179 | 4.48e-05| 1.12e-05 | 2.8e-06
Time 1 2 3 4 5 6 7 8 9 10
f 08|f 08|f 0.7|f 04|f 04| f 04|f 04\f 0.5|f 0.5\f 0.5
av 0.1\av 0.1|\ay 0.3|ay 08|ay 0.8|ay 0.8|ay 0.8|ayv  0.6|ay 0.5|ay 0.4
B v 0.6|v 0.6(v 04|v 0.3|v 0.3|v 0.3|v 0.3|v 0.6|v 0.8|v 0.9
p 04|p 04|p 02|\p 0.1|p 0.1\p 0.1\p 0.1\p 0.1\ p 0.3|p 0.3
iv 0.11iy 0.11iy 03|iyv 0.6|iv  0.6]iy 0.6|1y 0.6|1y 0.5|iy 0.5|iy 0.4




Viterbi trellis for “five”




Viterbi trellis for

“five”

\Y 0 0 |0.008([0.0072] 0.00672| 0.00403 | 0.00188 | 0.00161 | 0.000667 | 0.000493
AY 0 0.04 | 0.048| 0.0448 | 0.0269 | 0.0125 | 0.00538 | 0.00167 | 0.000428 | 8.78e-05
F 0.8 | 0.32 | 0.112] 0.0224 [ 0.00448 | 0.000896 | 0.000179 | 4.48e-05| 1.12e-05 | 2.8e-06
Time 1 2 3 4 5 6 7 8 9 10
f 08|f 08|f 0.7\f 04|f 04\f 0.4\ f 0.4\ f 0.5|f 0.5|f 0.5
ay 0.1|ay 0.1|{ay 0.3|ay 0.8|ay 0.8|ay 0.8 ay 0.8[ay  0.6|ay 0.5| ay 0.4
B v 0.6|v 0.6|v 04|v 03|v 0.3|v 0.3|v 0.3|v 0.6|v 0.8|v 0.9
p 04(p 04|p 0.2(p 0.I|p 0.1\p 0.1(p 0.1(p 0.1\p 0.3|p 0.3
iy 0.1(iy 0.1(iy 0.3|iy 0.6{iyv  0.6]iy 0.6] 1y 0.6y 0.5 1y 0.5 1y 0.4




Search space with bigrams

p(zero | one) 0
p(zero | two)
0 O

e N ) ) W) W) W W e e W

p(zero | zero)




Viterbi trellis with 2 words and
uniform LM

=

o & ¢ ¢ ¢

=




Viterbi backtrace

Tiiiii
iy




