
Hidden Markov Models 

COSI 114 – Computational Linguistics 
James Pustejovsky 
 
February10, 2015 
Brandeis University 

Slides thanks to David Blei 



•  Set of states:  
•  Process moves from one state to another generating a          

 sequence of states :     
•  Markov chain property:  probability of each subsequent state 
depends only on what was the previous state: 

  
 
•  To define Markov model, the following probabilities have to be 
specified: transition probabilities                               and initial 
probabilities 

Markov Models 
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Rain Dry 

0.7 0.3 

0.2 0.8 

•  Two states : ‘Rain’ and ‘Dry’. 

•  Transition probabilities: P(‘Rain’|‘Rain’)=0.3 , P(‘Dry’|‘Rain’)=0.7 , 

P(‘Rain’|‘Dry’)=0.2, P(‘Dry’|‘Dry’)=0.8 

•  Initial probabilities: say P(‘Rain’)=0.4 , P(‘Dry’)=0.6 . 

Example of Markov Model 



•  By Markov chain property, probability of state sequence can be found by the 
formula: 

•  Suppose we want to calculate a probability of a sequence of states in our 
example,  {‘Dry’,’Dry’,’Rain’,Rain’}.  

        P({‘Dry’,’Dry’,’Rain’,Rain’} ) = 
P(‘Rain’|’Rain’) P(‘Rain’|’Dry’) P(‘Dry’|’Dry’) 
P(‘Dry’)= 
           = 0.3*0.2*0.8*0.6 

Calculation of sequence probability 
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Hidden Markov models 

  

•  Set of states:  
• Process moves from one state to another generating a   sequence of states : 

•  Markov chain property:  probability of each subsequent state depends only on 
what was the previous state: 

  
•  States are not visible, but each state randomly generates one of M 
observations (or visible states) 

•  To define hidden Markov model, the following probabilities  have to be 

specified: matrix of transition probabilities A=(aij), aij= P(si | sj) , matrix 

of observation probabilities B=(bi (vm )), bi(vm ) = P(vm | si) and a 

vector of initial probabilities  π=(πi),  πi = P(si) . Model is represented 

by M=(A, B, π). 
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Low High 

0.7 0.3 

0.2 0.8 

Dry Rain 

0.6 0.6 
0.4 0.4 

Example of Hidden Markov Model 



Rain Dry 
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0.2 0.8 

•  Two states : ‘Rain’ and ‘Dry’. 

•  Transition probabilities: P(‘Rain’|‘Rain’)=0.3 , P(‘Dry’|‘Rain’)=0.7 , 

P(‘Rain’|‘Dry’)=0.2, P(‘Dry’|‘Dry’)=0.8 

•  Initial probabilities: say P(‘Rain’)=0.4 , P(‘Dry’)=0.6 . 

Example of Markov Model 



•  By Markov chain property, probability of state sequence can be found by the 
formula: 

•  Suppose we want to calculate a probability of a sequence of states in our 
example,  {‘Dry’,’Dry’,’Rain’,Rain’}.  

        P({‘Dry’,’Dry’,’Rain’,Rain’} ) = 
P(‘Rain’|’Rain’) P(‘Rain’|’Dry’) P(‘Dry’|’Dry’) 
P(‘Dry’)= 
           = 0.3*0.2*0.8*0.6 

Calculation of sequence probability 
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Hidden Markov models 

  

•  Set of states:  
• Process moves from one state to another generating a   sequence of states : 

•  Markov chain property:  probability of each subsequent state depends only on 
what was the previous state: 

  
•  States are not visible, but each state randomly generates one of M 
observations (or visible states) 

•  To define hidden Markov model, the following probabilities  have to be 

specified: matrix of transition probabilities A=(aij), aij= P(si | sj) , matrix 

of observation probabilities B=(bi (vm )), bi(vm ) = P(vm | si) and a 

vector of initial probabilities  π=(πi),  πi = P(si) . Model is represented 

by M=(A, B, π). 
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•  Two states : ‘Low’ and ‘High’ atmospheric pressure. 
•  Two observations : ‘Rain’ and ‘Dry’. 

•  Transition probabilities: P(‘Low’|‘Low’)=0.3 , P(‘High’|‘Low’)=0.7 , 

P(‘Low’|‘High’)=0.2, P(‘High’|‘High’)=0.8 

•  Observation probabilities : P(‘Rain’|‘Low’)=0.6 , P(‘Dry’|‘Low’)=0.4 , 

P(‘Rain’|‘High’)=0.4 , P(‘Dry’|‘High’)=0.3 . 

•  Initial probabilities: say P(‘Low’)=0.4 , P(‘High’)=0.6 . 

Example of Hidden Markov Model 



What is an HMM? 

�  Graphical Model 
�  Circles indicate states 
�  Arrows indicate probabilistic dependencies 

between states 



What is an HMM? 

�  Green circles are hidden states 
�  Dependent only on the previous state 
� “The past is independent of the future given the 

present.” 



What is an HMM? 

�  Purple nodes are observed states 
�  Dependent only on their corresponding hidden 

state 



HMM Formalism 

�  {S, K, Π, Α, Β}  
�  S : {s1…sN } are the values for the hidden states 
�  K : {k1…kM } are the values for the observations 
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HMM Formalism 

�  {S, K, Π, Α, Β}  
�   Π = {πι} are the initial state probabilities 
�  A = {aij} are the state transition probabilities 
�  B = {bik} are the observation state probabilities 
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Inference in an HMM 

�  Compute the probability of a given observation 
sequence 

�  Given an observation sequence, compute the 
most likely hidden state sequence 

�  Given an observation sequence and set of 
possible models, which model most closely fits 
the data? 
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Given an observation sequence and a model, 
compute the probability of the observation 
sequence 

Decoding 



Decoding 
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Decoding 
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•  Special structure gives us an efficient solution 
using dynamic programming. 

•  Intuition: Probability of the first t observations is 
the same for all possible t+1 length state 
sequences.  

•  Define: 
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Forward Procedure 
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x1 xt+1 xT xt xt-1 

Forward Procedure 
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oT o1 ot ot-1 ot+1 

x1 xt+1 xT xt xt-1 

Forward Procedure 
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x1 xt+1 xT xt xt-1 

Forward Procedure 
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Forward Procedure 
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Decoding Solution 
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Best State Sequence 

�  Find the state sequence that best explains the observations 

�  Viterbi algorithm 

�    )|(maxarg OXP
X
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Viterbi Algorithm 
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Parameter Estimation 

•  Given an observation sequence, find the model 
that is most likely to produce that sequence. 

•  No analytic method 
•  Given a model and observation sequence, update 

the model parameters to better fit the 
observations. 
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Parameter Estimation 
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HMM Applications 

�  Generating parameters for n-gram models 
�  Tagging speech 
�  Speech recognition 
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The Most Important Thing 
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B B B B 

We can use the special structure of this 
model to do a lot of neat math and solve 
problems that are otherwise not solvable. 



Low High 
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Dry Rain 
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Example of Hidden Markov Model 



Rain Dry 

0.7 0.3 

0.2 0.8 

•  Two states : ‘Rain’ and ‘Dry’. 

•  Transition probabilities: P(‘Rain’|‘Rain’)=0.3 , P(‘Dry’|‘Rain’)=0.7 , 

P(‘Rain’|‘Dry’)=0.2, P(‘Dry’|‘Dry’)=0.8 

•  Initial probabilities: say P(‘Rain’)=0.4 , P(‘Dry’)=0.6 . 

Example of Markov Model 



•  By Markov chain property, probability of state sequence can be found by the 
formula: 

•  Suppose we want to calculate a probability of a sequence of states in our 
example,  {‘Dry’,’Dry’,’Rain’,Rain’}.  

        P({‘Dry’,’Dry’,’Rain’,Rain’} ) = 
P(‘Rain’|’Rain’) P(‘Rain’|’Dry’) P(‘Dry’|’Dry’) 
P(‘Dry’)= 
           = 0.3*0.2*0.8*0.6 

Calculation of sequence probability 
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Hidden Markov models 

  

•  Set of states:  
• Process moves from one state to another generating a   sequence of states : 

•  Markov chain property:  probability of each subsequent state depends only on 
what was the previous state: 

  
•  States are not visible, but each state randomly generates one of M 
observations (or visible states) 

•  To define hidden Markov model, the following probabilities  have to be 

specified: matrix of transition probabilities A=(aij), aij= P(si | sj) , matrix 

of observation probabilities B=(bi (vm )), bi(vm ) = P(vm | si) and a 

vector of initial probabilities  π=(πi),  πi = P(si) . Model is represented 

by M=(A, B, π). 
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•  Two states : ‘Low’ and ‘High’ atmospheric pressure. 
•  Two observations : ‘Rain’ and ‘Dry’. 

•  Transition probabilities: P(‘Low’|‘Low’)=0.3 , P(‘High’|‘Low’)=0.7 , 

P(‘Low’|‘High’)=0.2, P(‘High’|‘High’)=0.8 

•  Observation probabilities : P(‘Rain’|‘Low’)=0.6 , P(‘Dry’|‘Low’)=0.4 , 

P(‘Rain’|‘High’)=0.4 , P(‘Dry’|‘High’)=0.3 . 

•  Initial probabilities: say P(‘Low’)=0.4 , P(‘High’)=0.6 . 

Example of Hidden Markov Model 



• Suppose we want to calculate a probability of a sequence of observations in our 
example,  {‘Dry’,’Rain’}. 
• Consider all possible hidden state sequences:  

 P({‘Dry’,’Rain’} ) = P({‘Dry’,’Rain’} , {‘Low’,’Low’}) + 
P({‘Dry’,’Rain’} , {‘Low’,’High’}) + P({‘Dry’,’Rain’} , 

{‘High’,’Low’}) + P({‘Dry’,’Rain’} , {‘High’,’High’})  
 
where first term is :  

P({‘Dry’,’Rain’} , {‘Low’,’Low’})=  
P({‘Dry’,’Rain’} | {‘Low’,’Low’})  P({‘Low’,’Low’}) =  
P(‘Dry’|’Low’)P(‘Rain’|’Low’) P(‘Low’)P(‘Low’|’Low) 
= 0.4*0.4*0.6*0.4*0.3 

Calculation of observation sequence 
probability 



Evaluation problem. Given the HMM  M=(A, B, π)   and  the observation 

sequence  O=o1 o2 ... oK , calculate the probability that model M has generated 

sequence  O . 

•  Decoding problem. Given the HMM  M=(A, B, π)   and  the observation 

sequence  O=o1 o2 ... oK , calculate the most likely sequence of hidden states si that 

produced this observation sequence O. 

•  Learning problem. Given some training observation sequences  O=o1 o2 ... oK  
and general structure of HMM (numbers of hidden and visible states), determine HMM 

parameters M=(A, B, π)   that best fit training data.  
  

O=o1...oK denotes a sequence of observations ok∈{v1,…,vM}. 
 
 

Main issues using HMMs : 



•  Typed word recognition, assume all characters are separated. 

•  Character recognizer outputs probability of the image being particular character, 
P(image|character). 

0.5 

0.03 

0.005 

0.31 z 

c 

b 

a 

Word recognition example(1). 

Hidden state                   Observation 



•  Hidden states of HMM = characters. 

•  Observations = typed images of characters segmented from the 
image         . Note that there is an infinite number of observations 

•  Observation probabilities = character recognizer scores.       

• Transition probabilities will be defined differently in two subsequent models.  

Word recognition example(2). 
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•  If  lexicon is given, we can construct separate HMM models for each lexicon word. 

Amherst a m h e r s t 

Buffalo b u f f a l o 

0.5 0.03 

•  Here recognition of word image is equivalent to the problem of evaluating few 
HMM models. 
• This is an application of Evaluation problem. 

Word recognition example(3). 

0.4 0.6 



•  We can construct a single HMM for all words. 
•  Hidden states = all characters in the alphabet. 
•  Transition probabilities and initial probabilities are calculated from language model. 
•  Observations and observation probabilities are as before. 

a m 

h e 

r 

s 

t 

b v 

f 
o 

•  Here we have to determine the best sequence of hidden states, the one that most 
likely produced word image. 
•  This is an application of Decoding problem. 

Word recognition example(4). 



•  The structure of hidden states is chosen. 

•  Observations are feature vectors extracted from vertical slices. 

•  Probabilistic mapping from hidden state to feature vectors:  1. use mixture of 
Gaussian models 

 2. Quantize feature vector space. 

Character recognition with HMM example. 



•  The structure of hidden states: 

•  Observation = number of islands in the vertical slice. 

s1 s2 s3 

• HMM for character ‘A’ : 
    
Transition probabilities: {aij}= 
 
 
Observation probabilities: {bjk}= 

 ⎛ .8  .2   0  ⎞ 
⏐  0  .8   .2 ⏐ 
 ⎝  0   0    1 ⎠ 

 ⎛ .9  .1   0  ⎞ 
⏐ .1  .8   .1 ⏐ 
 ⎝ .9  .1   0  ⎠ 

• HMM for character ‘B’ : 
    
Transition probabilities: {aij}= 
 
 
Observation probabilities: {bjk}= 

 ⎛ .8  .2   0  ⎞ 
⏐  0  .8   .2 ⏐ 
 ⎝  0   0    1 ⎠ 

 ⎛ .9  .1   0  ⎞ 
⏐  0  .2   .8 ⏐ 
 ⎝ .6  .4   0  ⎠ 

Exercise: character recognition with HMM(1) 



•  Suppose that after character image segmentation the following sequence of island 
numbers in 4 slices was observed: 
     { 1, 3, 2, 1} 

•  What HMM is more likely to generate this observation sequence , HMM for 
‘A’ or HMM for ‘B’ ? 

Exercise: character recognition with HMM(2) 



 Consider likelihood of generating given observation for each possible sequence of 
hidden states: 

•  HMM for character ‘A’: 

Hidden state sequence Transition probabilities Observation probabilities 

 s1→ s1→ s2→s3 .8 * .2  * .2         *      .9 *  0  *  .8  * .9   =    0    

 s1→ s2→ s2→s3 .2 * .8  * .2         *      .9 * .1  *  .8  * .9   =  0.0020736   

 s1→ s2→ s3→s3 .2 * .2  *  1         *      .9 * .1  *  .1  * .9   =  0.000324    

Total  =  0.0023976  
•  HMM for character ‘B’: 

Hidden state sequence Transition probabilities Observation probabilities 

 s1→ s1→ s2→s3 .8 * .2  * .2         *      .9 *  0  *  .2  * .6   =    0    

 s1→ s2→ s2→s3 .2 * .8  * .2         *      .9 * .8  *  .2  * .6   =  0.0027648   

 s1→ s2→ s3→s3 .2 * .2  *  1         *      .9 * .8  *  .4  * .6   =  0.006912    

Total  =  0.0096768  

Exercise: character recognition with HMM(3) 



• Evaluation problem. Given the HMM  M=(A, B, π)   and  the observation 

sequence  O=o1 o2 ... oK , calculate the probability that model M has generated 

sequence  O . 

•  Trying to find probability of observations O=o1 o2 ... oK  by means of considering all 
hidden state sequences (as was done in example) is impractical:  
       NK hidden state sequences - exponential complexity. 
 
•  Use Forward-Backward HMM algorithms for efficient calculations. 

•  Define the forward variable αk(i) as the joint probability of the partial observation 

sequence o1 o2 ... ok  and that the hidden state at time k is si  : αk(i)= P(o1 o2 ... 
ok , qk= si )  

Evaluation Problem. 



s1 

s2 

si 

sN 

s1 

s2 

si 

sN 

s1 

s2 

sj 

sN 

s1 

s2 

si 

sN 

a1j 

a2j 

aij 

aNj 

Time=     1                                         k                    k+1                                  K 

    o1                                          ok                    ok+1                                 oK  =   Observations 

Trellis representation of an HMM 



•  Initialization:  

      α1(i)= P(o1  , q1= si ) = πi bi (o1) , 1<=i<=N. 
 
•  Forward recursion: 

      αk+1(i)= P(o1 o2 ... ok+1 , qk+1= sj ) =  

 Σi P(o1 o2 ... ok+1 , qk= si , qk+1= sj ) =  

 Σi P(o1 o2 ... ok , qk= si) aij bj (ok+1 ) =  

 [Σi αk(i) aij ] bj (ok+1 ) ,     1<=j<=N, 1<=k<=K-1. 
•  Termination:  

 P(o1 o2 ... oK) = Σi P(o1 o2 ... oK , qK= si) = Σi αK(i) 
 
•  Complexity :  

 N2K operations. 

Forward recursion for HMM 



•  Define the forward variable βk(i) as the joint probability of the partial observation 

sequence ok+1 ok+2 ... oK  given  that the hidden state at time k is si  : βk(i)= P(ok+1 

ok+2 ... oK |qk= si ) 
•  Initialization:  

      βK(i)= 1  , 1<=i<=N. 
•  Backward recursion: 

      βk(j)= P(ok+1 ok+2 ... oK | qk= sj ) =  

 Σi P(ok+1 ok+2 ... oK , qk+1= si  | qk= sj ) =  

 Σi P(ok+2 ok+3 ... oK | qk+1= si) aji bi (ok+1 ) =  

 Σi βk+1(i) aji bi (ok+1 ) ,     1<=j<=N, 1<=k<=K-1. 
•  Termination:  

      P(o1 o2 ... oK) = Σi P(o1 o2 ... oK , q1= si) =  

 Σi P(o1 o2 ... oK  |q1= si) P(q1= si) = Σi β1(i) bi (o1) πi  
 

Backward recursion for HMM 



• Decoding problem. Given the HMM  M=(A, B, π)   and  the observation 

sequence  O=o1 o2 ... oK , calculate the most likely sequence of hidden states si that 
produced this observation sequence. 

•  We want to find the state sequence Q= q1…qK which maximizes  P(Q | o1 

o2 ... oK ) , or equivalently P(Q , o1 o2 ... oK ) . 
•  Brute force consideration of all paths takes exponential time. Use efficient Viterbi  
algorithm instead. 

•  Define variable  δk(i)  as the maximum probability of producing observation sequence 

o1 o2 ... ok  when moving along any hidden state sequence q1… qk-1 and getting into 

qk= si  . 

         δk(i) = max P(q1… qk-1 , qk= si  ,  o1 o2 ... ok)   
       where max is taken over all possible paths q1… qk-1 . 

Decoding problem 



•  General idea: 

 if best path ending in qk= sj  goes through qk-1= si  then it      should coincide 

with best path ending in qk-1= si . 

s1 

si 

sN 

sj aij 

aNj 

a1j 

 qk-1                           qk  

•  δk(i) = max P(q1… qk-1 , qk= sj  ,  o1 o2 ... ok) =  

maxi [ aij bj (ok )  max P(q1… qk-1= si  ,  o1 o2 ... ok-1) ] 

•  To backtrack best path keep info that predecessor of sj was si. 

Viterbi algorithm (1) 



•  Initialization: 

  δ1(i) = max P(q1= si  ,  o1) = πi bi (o1) , 1<=i<=N. 
• Forward recursion: 

    δk(j) = max P(q1… qk-1 , qk= sj  ,  o1 o2 ... ok) =  

     maxi [ aij bj (ok ) max P(q1… qk-1= si  ,  o1 o2 ... ok-1) ] =  

     maxi [ aij bj (ok ) δk-1(i) ] ,     1<=j<=N, 2<=k<=K. 
 
• Termination:  choose best path ending at time K 

             maxi [ δK(i) ] 
•  Backtrack best path. 

  This algorithm is similar to the forward recursion of evaluation problem, with Σ replaced by 
max and additional backtracking. 

Viterbi algorithm (2) 



• Learning problem. Given some training observation sequences  O=o1 o2 ... 
oK  and general structure of HMM (numbers of hidden and visible states), determine 

HMM parameters M=(A, B, π)   that best fit training data, that is maximizes 

P(O | M) .  

•  There is no algorithm producing optimal parameter values. 

•  Use iterative expectation-maximization algorithm to find local maximum of  P(O | 

M) - Baum-Welch  algorithm. 
 

Learning problem (1) 



•  If training data has information about sequence of hidden states (as in word 
recognition example), then use maximum likelihood estimation of parameters: 

  aij= P(si | sj) = 
Number of transitions from state sj to  state si 

         Number of transitions out of state sj 

bi(vm ) = P(vm | si)= 
Number of times observation vm occurs in state si 

            Number of times in state si 

Learning problem (2) 



General idea: 

aij= P(si | sj) = 
Expected number of transitions from state sj to  state si 

        Expected number of transitions out of state sj 

bi(vm ) = P(vm | si)= 
Expected number of times observation vm occurs in state si 

     Expected number of times in state si 

πi = P(si) =  Expected frequency in state si at time k=1.  

Baum-Welch algorithm 



•  Define variable ξk(i,j) as  the probability of being in state si at time k and in state 

sj at  time k+1, given the observation sequence o1 o2 ... oK .  

           ξk(i,j)= P(qk= si  , qk+1= sj  | o1 o2 ... oK)  

ξk(i,j)= 
P(qk= si  , qk+1= sj  , o1 o2 ... ok) 
         P(o1 o2 ... ok) 

= 

P(qk= si  , o1 o2 ... ok) aij bj (ok+1 ) P(ok+2  ... oK |  qk+1= sj )  
                                 P(o1 o2 ... ok) 

= 

   αk(i) aij bj (ok+1 ) βk+1(j)  
Σi Σj αk(i) aij bj (ok+1 ) βk+1(j) 

Baum-Welch algorithm: expectation step(1) 



•  Define variable γk(i) as  the probability of being in state si at time k, given the 

observation sequence o1 o2 ... oK .  

           γk(i)= P(qk= si   | o1 o2 ... oK)  

γk(i)= 
P(qk= si , o1 o2 ... ok) 
    P(o1 o2 ... ok) 

= 
  αk(i) βk(i)  
Σi αk(i) βk(i) 

Baum-Welch algorithm: expectation step(2) 



• We calculated  ξk(i,j) = P(qk= si  , qk+1= sj  | o1 o2 ... oK)  
               and      γk(i)= P(qk= si   | o1 o2 ... oK)  

•  Expected number of transitions from state si to state sj = 

                   =  Σk  ξk(i,j) 

•  Expected number of transitions out of state si  = Σk  γk(i) 

•  Expected number of times observation vm occurs in state si = 

                   = Σk  γk(i) , k is such that ok= vm  

•  Expected frequency in state si at time k=1 :  γ1(i) .  

Baum-Welch algorithm: expectation step(3) 



aij  =  
Expected number of transitions from state sj to  state si 

        Expected number of transitions out of state sj 

bi(vm )   =  Expected number of times observation vm occurs in state si 

     Expected number of times in state si 

πi = (Expected frequency in state si at time k=1)  =  γ1(i).  

= 
Σk  ξk(i,j) 

 Σk  γk(i) 

= 
 Σk  ξk(i,j) 

Σk,ok= vm γk(i) 

Baum-Welch algorithm: maximization step 



The Noisy Channel Model 

�  Search through space of all possible 
sentences. 

� Pick the one that is most probable given 
the waveform. 



The Noisy Channel Model (II) 

� What is the most likely sentence out of 
all sentences in the language L given some 
acoustic input O? 

� Treat acoustic input O as sequence of 
individual observations  
◦ O = o1,o2,o3,…,ot 

� Define a sentence as a sequence of 
words: 
◦ W = w1,w2,w3,…,wn  



Noisy Channel Model (III) 

�  Probabilistic implication: Pick the highest prob S: 

� We can use Bayes rule to rewrite this: 

�  Since denominator is the same for each candidate 
sentence W, we can ignore it for the argmax: 

€ 

ˆ W = argmax
W ∈L

P(W | O)

€ 

ˆ W = argmax
W ∈L

P(O |W )P(W )€ 

ˆ W = argmax
W ∈L

P(O |W )P(W )
P(O)



Noisy channel model 

€ 

ˆ W = argmax
W ∈L

P(O |W )P(W )

likelihood prior 



The noisy channel model 

�  Ignoring the denominator leaves us with 
two factors: P(Source) and P(Signal|
Source) 



Speech Architecture meets Noisy 
Channel 



HMMs for speech 



Phones are not homogeneous! 

Time (s)
0.48152 0.937203

0

5000

ay k



Each phone has 3 subphones 



Resulting HMM word model for 
“six” 



HMMs more formally 

� Markov chains 
� A kind of weighted finite-state automaton 



HMMs more formally 

� Markov chains 
� A kind of weighted finite-state automaton 



Another Markov chain 



Another view of Markov chains 



An example with numbers: 

� What is probability of: 
◦ Hot hot hot hot 
◦ Cold hot cold hot 



Hidden Markov Models 



Hidden Markov Models 



Hidden Markov Models 

�  Bakis network           Ergodic (fully-connected) 
network 

�  Left-to-right network 



The Jason Eisner task 
�  You are a climatologist in 2799 studying the 

history of global warming 
�  YOU can’t find records of the weather in 

Baltimore for summer 2006 
�  But you do find Jason Eisner’s diary 
�  Which records how many ice creams he ate each 

day. 
�  Can we use this to figure out the weather? 
◦  Given a sequence of observations O,  
�  each observation an integer = number of ice creams eaten 
�  Figure out correct hidden sequence Q of weather states (H 

or C) which caused Jason to eat the ice cream 





HMMs more formally 
�  Three fundamental problems 
◦  Jack Ferguson at IDA in the 1960s 
1)   Given a specific HMM, determine likelihood 

of observation sequence. 
2)   Given an observation sequence and an 

HMM, discover the best (most probable) 
hidden state sequence 

3)   Given only an observation sequence, learn 
the HMM parameters (A, B matrix) 



The Three Basic Problems for HMMs 

�  Problem 1 (Evaluation): Given the observation 
sequence O=(o1o2…oT), and an HMM model Φ = (A,B), 
how do we efficiently compute P(O| Φ), the probability 
of the observation sequence, given the model 

�  Problem 2 (Decoding): Given the observation sequence 
O=(o1o2…oT), and an HMM model Φ = (A,B), how do 
we choose a corresponding state sequence Q=(q1q2…
qT) that is optimal in some sense (i.e., best explains the 
observations) 

�  Problem 3 (Learning): How do we adjust the model 
parameters Φ = (A,B) to maximize P(O| Φ )? 



Problem 1: computing the 
observation likelihood 

� Given the following HMM: 

� How likely is the sequence 3 1 3? 



How to compute likelihood 
�  For a Markov chain, we just follow the 

states 3 1 3 and multiply the probabilities 
� But for an HMM, we don’t know what 

the states are! 
�  So let’s start with a simpler situation. 
� Computing the observation likelihood for 

a given hidden state sequence 
◦  Suppose we knew the weather and wanted to 

predict how much ice cream Jason would eat. 
◦  I.e.  P( 3 1 3 | H H C) 



Computing likelihood for 1 given 
hidden state sequence 



Computing total likelihood of 3 1 3 

� We would need to sum over 
◦  Hot hot cold 
◦  Hot hot hot 
◦  Hot cold hot 
◦ …. 

� How many possible hidden state sequences are 
there for this sequence? 

� How about in general for an HMM with N 
hidden states and a sequence of T observations? 
◦ NT 

�  So we can’t just do separate computation for 
each hidden state sequence. 



Instead: the Forward algorithm 
�  A kind of dynamic programming algorithm 
◦  Uses a table to store intermediate values 

�  Idea: 
◦  Compute the likelihood of the observation sequence 
◦  By summing over all possible hidden state sequences 
◦  But doing this efficiently  
�  By folding all the sequences into a single trellis 



The Forward Trellis 



The forward algorithm 

� Each cell of the forward algorithm trellis 
alphat(j) 
◦ Represents the probability of being in state j 
◦ After seeing the first t observations 
◦ Given the automaton 

� Each cell thus expresses the following 
probabilty 



We update each cell 



The Forward Recursion 



The Forward Algorithm 



Decoding 
� Given an observation sequence 
◦  3 1 3 

� And an HMM 
�  The task of the decoder 
◦  To find the best hidden state sequence 

� Given the observation sequence O=(o1o2…
oT), and an HMM model Φ = (A,B), how do 
we choose a corresponding state sequence 
Q=(q1q2…qT) that is optimal in some sense 
(i.e., best explains the observations) 
 



Decoding 
� One possibility: 
◦  For each hidden state sequence 
�  HHH, HHC, HCH,  
◦ Run the forward algorithm to compute P(Φ |

O)   
� Why not? 
◦ NT 

�  Instead: 
◦ The Viterbi algorithm 
◦  Is again a dynamic programming algorithm 
◦ Uses a similar trellis to the Forward algorithm 



The Viterbi trellis 



Viterbi intuition 

� Process observation sequence left to 
right 

�  Filling out the trellis 
� Each cell: 



Viterbi Algorithm 



Viterbi backtrace 



Viterbi Recursion 



Why “Dynamic Programming” 

“I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision 
processes. An interesting question is, Where did the name, dynamic programming, come from? 
The 1950s were not good years for mathematical research. We had a very interesting gentleman in 
Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear 
and hatred of the word, research. I’m not using the term lightly; I’m using it precisely. His face 
would suffuse, he would turn red, and he would get violent if people used the term, research, in his 
presence. You can imagine how he felt, then, about the term, mathematical. The RAND Corporation 
was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, I felt I 
had to do something to shield Wilson and the Air Force from the fact that I was really doing 
mathematics inside the RAND Corporation. What title, what name, could I choose? In the first 
place I was interested in planning, in decision making, in thinking. But planning, is not a good 
word for various reasons. I decided therefore to use the word, “programming” I wanted to get 
across the idea that this was dynamic, this was multistage, this was time-varying I thought, lets kill 
two birds with one stone. Lets take a word that has an absolutely precise meaning, namely 
dynamic, in the classical physical sense. It also has a very interesting property as an adjective, 
and that is its impossible to use the word, dynamic, in a pejorative sense. Try thinking of some 
combination that will possibly give it a pejorative meaning. Its impossible. Thus, I thought dynamic 
programming was a good name. It was something not even a Congressman could object to. So I 
used it as an umbrella for my activities.”  Richard Bellman, “Eye of the Hurrican: an autobiography” 
1984. 

Thanks to Chen, Picheny, Eide, Nock 



HMMs for Speech 

� We haven’t yet shown how to learn the 
A and B matrices for HMMs; we’ll do 
that later today or possibly on Monday 

� But let’s return to think about speech 



Reminder: a word looks like this: 



HMM for digit recognition task 



The Evaluation (forward) problem 
for speech 
� The observation sequence O is a series of 

MFCC vectors 
� The hidden states W are the phones and 

words 
�  For a given phone/word string W, our job 

is to evaluate P(O|W) 
�  Intuition: how likely is the input to have 

been generated by just that word string 
W 



Evaluation for speech: Summing 
over all different paths! 
�  f ay ay ay ay v v v v  
�  f f ay ay ay ay v v v  
�  f f f f ay ay ay ay v 
�  f f ay ay ay ay ay ay v 
�  f f ay ay ay ay ay ay ay ay v 
�  f f ay v v v v v v v  



The forward lattice for “five” 



The forward trellis for “five” 



Viterbi trellis for “five” 



Viterbi trellis for “five” 



Search space with bigrams 



Viterbi trellis with 2 words and 
uniform LM 



Viterbi backtrace 


