Information Theory

CS114 Lab 2
Te Rutherford



Information Theory

» Developed by Shannon in the 40’s to formalize the
fundamental limits on data compression and

transmission rate.

 |n natural language, we do compress data (e.qg.
word length) and transmit data (speaking).



Concepts

Entropy, joint entropy, and conditional entropy
Mutual Information

KL Divergence

Cross entropy

Perplexity



—ntropy

* a measure of the uncertainty associated with a
random variable (and its probability distribution

function).
* Higher entropy implies ...

= Higher uncertainty (harder to predict)
= More information content

= More bits required to encode and communicate



X = horse that wins the
long distance race

P(X=1) =

Which one is harder to predict?

P(X=2) =
P(X=3) =
P(X=4) =

0.25
0.25
0.25
0.25

Y = horse that wins the
short distance race

D(Y_‘I)_
P(Y=2) =
P(Y=3) =
P(Y=4) =




—ntropy
o Definition

H(p) = H(X) == ) p(x)log,p(x)

xeX

« What’s the entropy of X?

« What’s the entropy of Y7



Which one is harder to predict?

« PX=1)=0.25 00 ¢ P(Y=1) = O5 0

« PX=2)=0.25 10 o P(Y=2) = 10

« PX=3)=0.25 01 o P(Y=3) = 111

« PX=4)=0.25 11 ¢ P(Y=4) = 110

H(X) = 2 bits H(Y) = 1.68 bits

* harder to predict e more predictable

* more bits to code (on * more frequent one gets
average) a shorter code

* more information * We can guess ...



Joint Entropy

* The joint entropy of 2 RV XY is the number of bits
needed on average to code both their values

e Same interpretation as univariate version.

HX.Y) =~} » p(x.y)log,p(X.Y)

xeX yeY



Conditional Entropy

* The conditional entropy of a RV Y given another X,
expresses how many extra bits required on

average to communicate Y given that the other
party knows X

H(YIX) == ) p(x.y)log,p(ylx)

xeXyeY

« What is H(Y|X) if X is a perfect predictor of Y?
« What is H(Y|X) if X is independent of Y?



Mutual Information

« How predictive is X of Y7 and vice versa
 |(X,Y) is mutual information between X and Y
I(X,Y) = H(Y) = HY[X) = HX) = HX]Y)
(there are many other equivalent definitions)

 |f Xis a perfect predictor of Y, then
(X,Y) = H(Y) = H(Y[X) = H(Y) = 0 = H(Y)
 |f Xis iIndependent of Y, then

(X,Y) = H(Y) = H(Y[X) = H(Y) - H(Y) = O




Mutual Information in Natural Language

 |[f we want to predict the author’s gender,
— l(gender, talk about health or not)
— l(gender, talk about sports or not)
— Il(gender, talk about cars or not)

« then we rank how predictive/relevant each topic to
gender.



Pointwise Mutual Information

 In contrast, pointwise mutual information — often

called as PMI — is defined for specific values of X
and Y

P(X=x,Y=y)

PMI(x,y) = log P(X = x)P(Y =)

 When computed for a pair of words, PMI can
measure the semantic relatedness of two words
e.g.
PMI (“drink”, “beer”) > PMI (“drink”, “homework?”)



—ntropy of Natural Language

* How much information is there per word?

 How many bits do we need to communicate in
—nglish?

H(X) =- Y p(x)log,p(x)

xeEX

H(Wl:n ) == 2 p(wl:n )logzp(wlzn )

xeX

« We don’t know the true p. what should we do?



Cross Entropy

 Use the LM that we train instead and then
compute the entropy on the test data

H(Wl:n ) == E p(wlzn )logzp(wlzn )

xEX

1
H,,,w,)=- 2 ; log,p,,y(w; Iw,_,.w,_))

i=l:n



Relationship between frequency (negative log unigram probability) and length, and
information content and length.
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Correlations between information content and word length (solid) and between frequency
(negative log unigram probability) and word length (striped) for two-gram, three-gram, and
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Figure 2. Entropy of eight languages belonging to five linguistic families and a language isolate (Indo-
European: English, French, and German; Finno-Ugric: Finnish; Austronesian: Tagalog; Isolate: Sumerian;
Afroasiatic: Old Egyptian; Sino-Tibetan: Chinese).
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Montemurro MA, Zanette DH (2011) Universal Entropy of Word Ordering Across Linguistic Families. PLoS ONE 6(5): e19875. doi:10.1371/

journal.pone.0019875
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Syllabic Rate (#syl / s)
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FIGURE 1. Speech rate measured in terms of the number of syllables per second (mean values and 95%
confidence intervals). Stars indicate significant differences between the homogeneous subsets
revealed by post-hoc analysis.

Pellegrino, 2011



LANGUAGE INFORMATION DENSITY  SYLLABIC RATE INFORMATION RATE
ID; (#syl/sec)
English 0.91 (= 0.04) 6.19 (£ 0.16) 1.08 (£ 0.08)
French 0.74 (= 0.04) 7.18 (£ 0.12) 0.99 (£ 0.09)
German 0.79 (= 0.03) 597 (£0.19) 0.90 (= 0.07)
Italian 0.72 (= 0.04) 6.99 (+ 0.23) 0.96 (+0.10)
Japanese 0.49 (= 0.02) 7.84 (£ 0.09) 0.74 (= 0.06)
Mandarin 0.94 (= 0.04) 5.18 (£ 0.15) 0.94 (= 0.08)
Spanish 0.63 (= 0.02) 7.82 (£ 0.16) 0.98 (£ 0.07)
Vietnamese 1 (reference) 5.22 (£ 0.08) 1 (reference)

TABLE 1. Cross-language comparison of information density, syllabic rate, and information rate (mean values
and 95% confidence intervals). Vietnamese is used as the external reference.

Pellegrino, 2011



Cross Entropy to

—valuate LM

» (Cross entropy measures the difference between

the two distributions.

» = H(true LM) + difference(true LM, our LM)

« (Cross entropy is the upper bound of the entropy,
so it is higher than the true entropy.
— Bad LM - high cross entropy
— Good LM - low cross entropy
— The best possible LM = the true entropy

— Nno better than that.



Perplexity

* Perplexity is defined as

]
—— 1
PPLM(WI:n) = PLM(WI:n) "= 'i/
P, (Wl:n)

« which is essentially

PP, (w,,) = 2 (i)



Homework 2

Assignment

1. Show that PPy (W) = 2HW) where PPy (W) is the perplexity of
language model M on the sequence of n words W and H (W) is the
cross entropy of M on W. (Include the solution in the report)

2. Show that PPy (W) = exp(—logpfr‘f (W)) where Pj; is the language
model. (Include the solution in the report)



