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Classifica(on 
�  Learn:	  h:	  X-‐>Y	  
◦  X	  –	  features	  
◦  Y	  –	  target	  classes	  

�  Suppose	  you	  know	  P(Y|X)	  exactly,	  how	  
should	  you	  classify?	  
◦  Bayes	  classifier:	  

� Why? 
* ( ) argmax ( | )bayes

y
y h x P Y y X x= = = =



3 

Genera(ve	  vs.	  Discrimina(ve	  	  
Classifiers	  -‐	  Intui(on 

�  Genera(ve	  classifier,	  e.g.,	  Naïve	  Bayes:	  
◦  Assume	  some	  func(onal	  form	  for	  P(X|Y),	  P(Y)	  
◦  Es(mate	  parameters	  of	  P(X|Y),	  P(Y)	  directly	  from	  training	  data	  
◦  Use	  Bayes	  rule	  to	  calculate	  P(Y|X=x)	  
◦  This	  is	  ‘genera(ve’	  model	  

�  Indirect	  computa(on	  of	  P(Y|X)	  through	  Bayes	  rule	  
�  But,	  can	  generate	  a	  sample	  of	  the	  data,	  
	  	  

�  Discrimina(ve	  classifier,	  e.g.,	  Logis(c	  Regression:	  
◦  Assume	  some	  func(onal	  form	  for	  P(Y|X)	  
◦  Es(mate	  parameters	  of	  P(Y|X)	  directly	  from	  training	  data	  
◦  This	  is	  the	  ‘discrimina(ve’	  model	  

�  Directly	  learn	  P(Y|X)	  
�  But	  cannot	  sample	  data,	  because	  P(X)	  is	  not	  available 

( ) ( ) ( | )
y

P X P y P X y=∑
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The	  Naïve	  Bayes	  Classifier 
�  Given:	  
◦  Prior	  P(Y)	  
◦  n	  condi(onally	  independent	  features	  X	  given	  the	  
class	  Y	  
◦  For	  each	  Xi,	  we	  have	  likelihood	  P(Xi|Y)	  

�  Decision	  rule:	  

�  If	  assump(on	  holds,	  NB	  is	  op(mal	  classifier! 

*
1( ) argmax ( ) ( ,..., | )

argmax ( ) ( | )
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History 
� The concept of Maximum Entropy can be 

traced back along multiple threads to 
Jaynes 1957. 

�  Introduced to NLP area by Berger et. Al. 
(1996). 

� Used in many NLP tasks: MT, Tagging, 
Parsing, PP attachment, LM, … 



Outline 

� Modeling: Intuition, basic concepts, 
… 

� Parameter training 
�  Feature selection 
� Case study 



Reference papers 

�  (Jaynes, 1957a) 
�  (Jaynes, 1957b) 
�  (Ratnaparkhi, 1997) 
�  (Ratnaparkhi, 1996) 
�  (Berger et. al., 1996) 
�  (Klein and Manning, 2003) 
 



Modeling 



The basic idea 

�  Goal: estimate p 
 
�  Choose p with maximum entropy (or “uncertainty”) 

subject to the constraints (or “evidence”). 

∑
×∈
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Setting 
�  From training data, collect (a, b) pairs: 
◦  a: thing to be predicted (e.g., a class in a 

classification problem) 
◦  b: the context 
◦  Ex: POS tagging:  
�  a=NN 
�  b=the words in a window and previous two tags 

 

� Learn the prob of each (a, b):  p(a, b) 



Features in POS tagging 
(Ratnaparkhi, 1996) 

context (a.k.a. history) allowable classes 



Maximum Entropy 
�  Why maximum entropy? 
�  Maximize entropy = Minimize commitment 

�  Model all that is known and assume nothing 
about what is unknown.  
◦  Model all that is known: satisfy a set of constraints 

that must hold 
 
◦  Assume nothing about what is unknown:  
   choose the most “uniform” distribution  
   è choose the one with maximum entropy 



Ex1: Coin-flip example 
(Klein & Manning 2003) 
�  Toss a coin: p(H)=p1, p(T)=p2. 
�  Constraint: p1 + p2 = 1 
�  Question: what’s your estimation of p=(p1, p2)? 
�  Answer: choose the p that maximizes H(p) 

p1 

H 

p1=0.3 

∑−=
x
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Coin-flip example (cont) 

p1 p2 

H 

p1 + p2 = 1 

p1+p2=1.0,  p1=0.3 



Ex2: An MT example 
(Berger et. al., 1996) 

Possible translation for the word “in” is:  

Constraint: 

Intuitive answer: 



An MT example (cont) 
Constraints: 

Intuitive answer: 



An MT example (cont) 
Constraints: 

Intuitive answer:  

?? 



Ex3: POS tagging 
(Klein and Manning, 2003) 



Ex3 (cont) 



Ex4: overlapping features 
(Klein and Manning, 2003) 



Modeling the problem 

�  Objective function: H(p) 
 
�  Goal: Among all the distributions that satisfy the 

constraints, choose the one, p*, that maximizes H(p). 
 
�  Question: How to represent constraints? 
 

)(maxarg* pHp
Pp∈

=
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Logis(c	  Regression 
�  Let	  X	  be	  the	  data	  instance,	  and	  Y	  be	  the	  class	  
label:	  Learn	  P(Y|X)	  directly	  
◦  Let	  W	  =	  (W1,	  W2,	  …	  Wn),	  X=(X1,	  X2,	  …,	  Xn),	  WX	  is	  the	  
dot	  product	  
◦  Sigmoid	  func(on: 

1( 1| )
1

P Y
e−

= =
+ wxX



23 

Logis(c	  Regression 
�  In	  logis(c	  regression,	  we	  learn	  the	  condi(onal	  
distribu(on	  P(y|x)	  

�  Let	  py(x;w)	  be	  our	  es(mate	  of	  P(y|x),	  where	  w	  is	  a	  
vector	  of	  adjustable	  parameters.	  	  	  

�  Assume	  there	  are	  two	  classes,	  y	  =	  0	  and	  y	  =	  1	  and	  

�  This	  is	  equivalent	  to	  

�  That	  is,	  the	  log	  odds	  of	  class	  1	  is	  a	  linear	  func(on	  of	  x	  
�  Q:	  How	  to	  find	  W?	  

1
1( ; )
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Construc(ng	  a	  Learning	  Algorithm 

�  The	  condi(onal	  data	  likelihood	  is	  the	  probability	  
of	  the	  observed	  Y	  values	  in	  the	  training	  data,	  
condi(oned	  on	  their	  corresponding	  X	  values.	  We	  
choose	  parameters	  w	  that	  sa(sfy	  

� where	  w	  =	  <w0,w1	  ,…,wn>	  is	  the	  vector	  of	  
parameters	  to	  be	  es(mated,	  yl	  denotes	  the	  
observed	  value	  of	  Y	  in	  the	  l	  th	  training	  example,	  
and	  xl	  denotes	  the	  observed	  value	  of	  X	  in	  the	  l	  th	  
training	  example	  

argmax ( | , )l l

l

P y∏
w

w = x w
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Summary	  of	  Logis(c	  Regression 
�  Learns	  the	  Condi(onal	  Probability	  
Distribu(on	  P(y|x)	  

�  Local	  Search.	  	  	  
◦  Begins	  with	  ini(al	  weight	  vector.	  	  	  
◦ Modifies	  it	  itera(vely	  to	  maximize	  an	  
objec(ve	  func(on.	  	  	  
◦  The	  objec(ve	  func(on	  is	  the	  condi(onal	  log	  
likelihood	  of	  the	  data	  –	  so	  the	  algorithm	  seeks	  
the	  probability	  distribu(on	  P(y|x)	  that	  is	  most	  
likely	  given	  the	  data. 
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What	  you	  should	  know	  about	  LR 
�  In	  general,	  NB	  and	  LR	  make	  different	  
assump(ons	  
◦  NB:	  Features	  independent	  given	  class	  -‐>	  
assump(on	  on	  P(X|Y)	  
◦  LR:	  Func(onal	  form	  of	  P(Y|X),	  no	  assump(on	  on	  
P(X|Y)	  

�  LR	  is	  a	  linear	  classifier	  
◦  decision	  rule	  is	  a	  hyperplane	  

�  LR	  op(mized	  by	  condi(onal	  likelihood	  
◦  no	  closed-‐form	  solu(on	  
◦  concave	  -‐>	  global	  op(mum	  with	  gradient	  ascent 
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Relation Between 
Naïve Bayes and Logistic Regression 

�  Naïve Bayes with Gaussian distributions for features (GNB), 
can be shown to given the same functional form for the 
conditional distribution P(Y|X). 
◦  But converse is not true, so Logistic Regression makes a weaker 

assumption. 
�  Logistic regression is a discriminative rather than 

generative model, since it models the conditional distribution 
P(Y|X) and directly attempts to fit the training data for 
predicting Y from X. Does not specify a full joint distribution. 

�  When conditional independence is violated, logistic 
regression gives better generalization if it is given sufficient 
training data. 

�  GNB converges to accurate parameter estimates faster 
(O(log n) examples for n features) compared to Logistic 
Regression (O(n) examples). 
◦  Experimentally, GNB is better when training data is scarce, logistic 

regression is better when it is plentiful. 
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Maximum Entropy 
� Why maximum entropy?? 
�  Recall: so far, we always “liked”  
◦ minimum entropy...  
   = minimum uncertainty  
   = maximum predictive power 
          .... distributions 
◦  always: relative to some “real world” data 
◦  always: clear relation between the data, model and 

parameters: e.g., n-gram language model 
�  This is still the case! But... 
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The Maximum Entropy Principle 
� Given some set of constraints (“relations”, “facts”), 

which must hold (i.e., we believe they correspond to 
the real world we model): 
What is the best distribution among those available? 

� Answer: the one with maximum entropy  
      (of such distributions satisfying the constraints) 

� Why? ...philosophical answer: 
◦ Occam’s razor; Jaynes, ...:  
�  make things as simple as possible, but not simpler; 
�  do not pretend you know something you don’t 



Entropy 
�  Entropy(self-information) 

◦  the amount of information in a random variable 
◦  average uncertainty of a random variable 
◦  the average length of the message needed to transmit 

an outcome of that variable 
◦  the size of the search space consisting of the possible 

values of a random variable and its associated 
probabilities 

�  Properties 
�                      (                         : providing no new 

information) 
�  increases with message length 

30 
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From Manning & Schutze, 1999 31 

Entropy Example 

�  Simplified Polynesian 
◦  letter frequencies 

◦  per-letter entropy 

◦ Coding 

∑
∈

=−=
},,,,,{

bits 5.2)(log)()(
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Perplexity and Entropy 
� Both measure the (un)certainty of a 

model 
◦ How many choices are there at any given 

point 
� Perplexity is 2(entropy) that is 2H(x1n,m) 
◦ Manning & Schutze hypothesize speech people 

want to show bigger gains when they reduce 
perplexity 

◦  Lowering perplexity from 940 to 540 is more 
impressive then reducing cross entropy from 
9.9 to 9.1 bits 
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Example 
�  Throwing the “unknown” die 
◦  do not know anything → we should assume a fair die 
       (uniform distribution ~ max. entropy distribution) 

�  Throwing unfair die 
◦  we know: p(4) = 0.4, p(6) = 0.2, nothing else 
◦  best distribution?  
◦  do not assume anything 
                   about the rest: 

�  What if we use instead:  

1 2 3 4 5 6
0.1 0.1 0.1 0.4 0.1 0.2

1 2 3 4 5 6
0.25 0.05 0.05 0.4 0.05 0.2 ? 
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Using Non-Maximum Entropy 
Distribution 

� ME distribution:  p: 
 

� Using instead:      q: 
 

�  Result depends on the real world: 
◦  real world ~ our constraints (p(4) = 0.4, p(6) = 0.2), 

everything else no specific constraints: 
�  our average error: D(q||p) [recall: Kullback-Leibler distance] 
◦  real world ~ orig. constraints + p(1) = 0.25: 
�  q is best (but hey, then we should have started with all 3 

constraints!)  

1 2 3 4 5 6
0.1 0.1 0.1 0.4 0.1 0.2

1 2 3 4 5 6
0.25 0.05 0.05 0.4 0.05 0.2
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Things in Perspective: n-gram LM 

�  Is an n-gram model a ME model? 
◦  yes if we believe that trigrams are the all and only 

constraints  
�  trigram model constraints: p(z|x,y) = c(x,y,z)/c(x,y) 
◦  no room for any “adjustments” 
�  like if we say p(2) = 0.7, p(6) = 0.3 for a throwing die 

� Accounting for the apparent inadequacy: 
◦  smoothing 
◦ ME solution: (sort of) smoothing “built in” 
�  constraints from training, maximize entropy on training + 

heldout 
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Features and Constraints 
�  Introducing... 
◦  binary valued selector functions (“features”): 
�  fi(y,x) ∈ {0,1}, where  

�  y ∈Y (sample space of the event being predicted, e.g. words, tags, ...),  
�  x ∈X (space of contexts, e.g. word/tag bigrams, unigrams, weather 

conditions, of - in general - unspecified nature/length/size) 

◦  constraints: 
�  Ep(fi(y,x)) = E’(fi(y,x)) (= empirical expectation) 
�  recall: expectation relative to distribution p: Ep(fi) = Σy,xp(x,y)fi(y,x) 
�  empirical expectation: E’(fi) = Σy,xp’(x,y)fi(y,x) =  1/|T| Σt=1..Tfi(yt,xt) 
�  notation: E’(fi(y,x)) = di: constraints of the form Ep(fi(y,x)) = di 
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Additional Constraint (Ensuring 
Probability Distribution) 

�  The model’s p(y|x) should be probability 
distribution: 
◦  add an “omnipresent” feature f0(y,x) = 1 for all y,x 
◦  constraint:  Ep(f0(y,x)) = 1 

� Now, assume: 
◦ We know the set S = {fi(y,x), i=0..N} (|S| = N+1) 
◦ We know all the constraints  
�  i.e. a vector di, one for each feature, i=0..N 

� Where are the parameters? 
◦  ...we do not even know the form of the model yet  
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The Model 

�  Given the constraints, what is the form of the model 
which maximizes the entropy of p? 

�  Use Lagrangian Multipliers: 
◦  minimizing some function φ(z) in the presence of N 

constraints gi(z) = di means to minimize 
                     φ(x) - Σi=1..Nλi(gi(x) - di)            (w.r.t. all λi and x) 
◦  our case, minimize   
         A(p) = -H(p) - Σi=1..Nλi(Ep(fi(y,x)) - di)  (w.r.t. all λi and p!) 
◦  i.e. φ(z) = -H(p), gi(z)= Ep(fi(y,x)) (variable z ~ distribution p) 
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Loglinear (Exponential) Model 

� Minimize: for p, derive (partial derivation) and 
solve A’(p)  =  0: 
δ[-H(p) - Σi=0..Nλi(Ep(fi(y,x)) - di)]/δp = 0 
δ[ Σ p log(p) - Σi=0..Nλi((Σ p fi) - di)]/δp = 0 

... 

1 + log(p) - Σi=0..Nλi fi = 0 
1 + log(p) = Σi=1..Nλi fi + λ0 
              p = eΣi=1..Nλi fi + λ0 - 1 

�  p(y,x) = (1/Z) eΣi=1..Nλifi(y,x)   (Z = e 1-λ0, the normalization factor) 
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Maximizing the Lambdas: Setup 
�  Model: p(y,x) = (1/Z) eΣi=1..Nλifi(y,x) 

�  Generalized Iterative Scaling (G.I.S.) 
◦  obeys form of model & constraints: 

�  Ep(fi(y,x)) = di 

◦  G.I.S. needs, in order to work, ∀y,x Σi=1..N fi(y,x) = C 
�  to fulfill, define additional constraint: 

�  fN+1(y,x) = Cmax - Σi=1..N fi(y,x), where Cmax = maxx,y Σi=1..N fi(y,x)  

◦  also, approximate (because Σx∈All contexts is not (never) feasible) 
�  Ep(fi) = Σy,xp(x,y)fi(y,x) ≅ 1/|T| Σt=1..TΣy∈Yp(y|xt)fi(y,xt)  
     (use p(y,x)=p(y|x)p’(x), where p’(x) is empirical i.e. from data T) 
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Generalized Iterative Scaling 
�  1. Initialize λi

(1) (any values, e.g. 0), compute di, i=1..N+1 
�  2. Set iteration number n to 1. 
�  3. Compute current model distribution expected values   
        of all the constraint expectations  
   Ep(n)(fi)    (based on p(n)(y|xt))  
◦  [pass through data, see previous slide;  
      at each data position t, compute p(n)(y,xt), normalize] 

�  4. Update λi
(n+1) = λi

(n) + (1/C) log(di/Ep(n)(fi)) 
�  5. Repeat 3.,4. until convergence.  
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Comments on Features 

�  Advantage of “variable” (~ not fixed) context in f(y,x): 
◦  any feature o.k. (examples mostly for tagging): 

�  previous word’s part of speech is VBZ or VB or VBP, y is DT 
�  next word: capitalized, current: “.”, and y is a sentence break (SB detect) 
�  y is MD, and the current sentence is a question (last word: question mark) 
�  tag assigned by a different tagger is VBP, and y is VB 
�  it is before Thanksgiving and y is “turkey” (Language modeling) 
�  even (God forbid!) manually written rules, e.g. y is VBZ and there is ...  

◦  remember, the predicted event plays a role in a feature: 
�  also, a set of events: f(y,x) is true if y is NNS or NN, and x is ... 
�  x can be ignored as well (“unigram” features) 
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Feature Selection 
�  Advantage: 
◦  throw in many features  

�  typical case: specify templates manually (pool of features P), fill in 
from data, possibly add some specific manually written features 

�  let the machine select 
�  Maximum Likelihood ~ Minimum Entropy on training data 
�  after, of course, computing the λi’s using the MaxEnt algorithm 

�  Naive (greedy of course) algorithm: 
◦  start with empty S, add feature at a time (MLE after ME) 
◦  too costly for full computation (|S| x |P| x |ME-time|) 
◦  Solution: see Berger & DellaPietras 
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Logistic Regression 
�  Assumes a parametric form for directly estimating 

P(Y | X). For binary concepts, this is: 

∑ =
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•  Equivalent to a one-layer backpropagation neural net. 
–  Logistic regression is the source of the sigmoid function 

used in backpropagation. 
–  Objective function for training is somewhat different. 
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Logistic Regression as a Log-Linear Model 

�  Logistic regression is basically a linear model, which 
is demonstrated by taking logs. 

)|1(
)|0(1 iff 0 labelAssign 
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•  Also called a maximum entropy model (MaxEnt) 
because it can be shown that standard training for 
logistic regression gives the distribution with maximum 
entropy that is consistent with the training data. 
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Logistic Regression Training  
�  Weights are set during training to maximize the 

conditional data likelihood : 

    where D is the set of training examples and Yd 
and Xd denote, respectively, the values of Y and X 
for example d. 

),|(argmax WXYPW d

Dd

d

W
∏
∈

←

 
•  Equivalently viewed as maximizing the 

conditional log likelihood (CLL) 

∑
∈

←
Dd

dd

W
WXYPW ),|(lnargmax
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Logistic Regression Training 
�  Like neural-nets, can use standard gradient 

descent to find the parameters (weights) 
that optimize the CLL objective function. 

� Many other more advanced training methods 
are possible to speed convergence. 
◦  Conjugate gradient 
◦  Generalized Iterative Scaling (GIS) 
◦  Improved Iterative Scaling (IIS) 
◦  Limited-memory quasi-Newton (L-BFGS) 
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Preventing Overfitting in Logistic Regression 

�  To prevent overfitting, one can use 
regularization (a.k.a. smoothing) by penalizing 
large weights by changing the training objective: 

2

2
),|(lnargmax WWXYPW

Dd

dd

W

λ
−← ∑

∈

•  This can be shown to be equivalent to assuming a 
Guassian prior for W with zero mean and a 
variance related to 1/λ.	  

Where λ is a constant that determines the amount of smoothing 



Parameter estimation 



Algorithms 

� Generalized Iterative Scaling (GIS): 
(Darroch and Ratcliff, 1972) 

�  Improved Iterative Scaling (IIS): (Della 
Pietra et al., 1995) 



GIS: setup 

Requirements for running GIS: 
�  Obey form of model and constraints: 

�  An additional constraint: 
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Add a new feature fk+1: 



GIS algorithm 

�  Compute dj, j=1, …, k+1 
�  Initialize            (any values, e.g., 0)  
�  Repeat until converge 
◦  For each j 

�  Compute  

 
 
  

�  Update 
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Approximation for calculating feature 
expectation 
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Properties of GIS 
�  L(p(n+1)) >= L(p(n)) 
�  The sequence is guaranteed to converge to p*. 
�  The converge can be very slow. 

�  The running time of each iteration is O(NPA): 
◦  N: the training set size 
◦  P: the number of classes 
◦  A: the average number of features that are active for a 

given event (a, b). 



IIS algorithm 

�  Compute dj, j=1, …, k+1 and 
�  Initialize            (any values, e.g., 0)  
�  Repeat until converge 
◦  For each j 

�  Let                 be the solution to   

 
 
  

�  Update 
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Calculating  
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Feature selection 



Feature selection 
� Throw in many features and let the 

machine select the weights 
◦ Manually specify feature templates 
 

� Problem: too many features 
 
� An alternative: greedy algorithm 
◦  Start with an empty set S 
◦ Add a feature at each iteration 
 



Notation 

The gain in the log-likelihood of the training data: 

After adding a feature: 

With the feature set S: 



Feature selection algorithm 
(Berger et al., 1996) 

�  Start with S being empty; thus ps is uniform. 
 
�  Repeat until the gain is small enough 
◦  For each candidate feature f 

�  Computer the model                  using IIS 
�  Calculate the log-likelihood gain 

◦  Choose the feature with maximal gain, and add it to S 

fSp ∪

è Problem: too expensive 



Approximating gains 
(Berger et. al., 1996)  

�  Instead of recalculating all the weights, 
calculate only the weight of the new feature. 



Training a MaxEnt Model 
Scenario #1: 
�  Define features templates 
�  Create the feature set 
�  Determine the optimum feature weights via GIS or IIS 

Scenario #2: 
�  Define feature templates 
�  Create candidate feature set S 
�  At every iteration, choose the feature from S (with max 

gain) and determine its weight (or choose top-n 
features and their weights). 

 



Case study 



POS tagging 
(Ratnaparkhi, 1996) 

�  Notation variation:  
◦  fj(a, b): a: class, b: context  
◦  fj(hi, ti):  h: history for ith word, t: tag for ith word 

�  History: 

�  Training data: 
◦  Treat it as a list of  (hi, ti) pairs. 
◦  How many pairs are there? 
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Using a MaxEnt Model 
� Modeling:  
 
� Training:  
◦ Define features templates 
◦ Create the feature set 
◦ Determine the optimum feature weights via 

GIS or IIS 

� Decoding:  

 



Modeling 
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Training step 1:  
define feature templates 

History hi Tag ti 



Step 2: Create feature set 

è Collect all the features from the training data 
è Throw away features that appear less than 10 times 



Step 3: determine the feature weights 

�  GIS 
 
�  Training time: 
◦  Each iteration: O(NTA): 
�  N: the training set size 
�  T: the number of allowable tags 
�  A: average number of features that are active for a (h, t). 

◦   About 24 hours on an IBM RS/6000 Model 380. 
 
�  How many features? 



Decoding: Beam search 
� Generate tags for w1, find top N, set s1j 

accordingly, j=1, 2, …, N 
�  For i=2 to n (n is the sentence length) 
◦  For j=1 to N 
�  Generate tags for wi, given s(i-1)j as previous tag 

context 
�  Append each tag to s(i-1)j to make a new sequence. 
◦  Find N highest prob sequences generated 

above, and set sij accordingly, j=1, …, N 
� Return highest prob sequence sn1. 



Beam search 



Viterbi search 



Decoding (cont) 
�  Tags for words: 
◦  Known words: use tag dictionary 
◦  Unknown words: try all possible tags 
 

�  Ex: “time flies like an arrow” 

�  Running time: O(NTAB) 
◦  N: sentence length 
◦  B: beam size 
◦  T: tagset size 
◦  A: average number of features that are active for a given event  



Experiment results 



Comparison with other learners 

� HMM: MaxEnt uses more context 

�  SDT:  MaxEnt does not split data 
 
� TBL:   MaxEnt is statistical and it provides 

probability distributions. 



MaxEnt Summary 
�  Concept: choose the p* that maximizes entropy while 

satisfying all the constraints. 

�  Max likelihood: p* is also the model within a model 
family that maximizes the log-likelihood of the training 
data. 

�  Training: GIS or IIS, which can be slow. 

�  MaxEnt handles overlapping features well. 

�  In general, MaxEnt achieves good performances on 
many NLP tasks. 



Additional slides 



Ex4 (cont) 

?? 
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Multinomial Logistic Regression 

� Logistic regression can be generalized to 
multi-class problems (where Y has a 
multinomial distribution). 

� Effectively constructs a linear classifier for 
each category. 
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The Task, Again 
�  Recall: 
◦  tagging ~ morphological disambiguation 
◦  tagset VT ⊂ (C1,C2,...Cn) 
�  Ci - morphological categories, such as POS, NUMBER, 

CASE, PERSON, TENSE, GENDER, ... 

◦ mapping w → {t ∈VT} exists 
�  restriction of Morphological Analysis: A+ → 2(L,C1,C2,...,Cn) 

  where A is the language alphabet, L is the set of lemmas 

◦  extension to punctuation, sentence boundaries 
(treated as words) 
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Maximum Entropy Tagging Model 

�  General 
  p(y,x) = (1/Z) eΣi=1..Nλifi(y,x)

 
Task: find λi satisfying the model and constraints  
�  Ep(fi(y,x)) = di 

where  
�  di = E’(fi(y,x)) (empirical expectation i.e. feature frequency) 

�  Tagging 
  p(t,x) = (1/Z) eΣi=1..Nλifi(t,x) (λ0 might be extra: cf. µ in AR(?) 
�  t ∈ Tagset, 
�  x ~ context (words and tags alike; say, up to three positions R/L) 
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Features for Tagging 

� Context definition 
◦  two words back and ahead, two tags back, current word: 
�  xi = (wi-2,ti-2,wi-1,ti-1,wi,wi+1,wi+2) 

◦  features may ask any information from this window 
�  e.g.:  

�  previous tag is DT 
�  previous two tags are PRP$ and MD, and the following word is “be” 
�  current word is “an” 
�  suffix of current word is “ing” 

�  do not forget: feature also contains ti, the current tag: 
�  feature #45: suffix of current word is “ing” & the tag is VBG ⇔ f45 = 1 
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Feature Selection 
�  The PC1 way (see also yesterday’s class): 
◦  (try to) test all possible feature combinations 
�  features may overlap, or be redundant; also, general or specific - 

impossible to select manually 
◦  greedy selection: 
�  add one feature at a time, test if (good) improvement: 

�   keep if yes, return to the pool of features if not 

◦  even this is costly, unless some shortcuts are made 
�  see Berger & DPs for details 

�  The other way:  
◦  use some heuristic to limit the number of features   

�  1Politically (or, Probabilistically-stochastically) Correct 
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Limiting the Number of Features 
�  Always do (regardless whether you’re PC or not): 
◦  use contexts which appear in the training data (lossless 

selection) 
�  More or less PC, but entails huge savings (in the 

number of features to estimate λi weights for): 
◦  use features appearing only L-times in the data (L ~ 10) 
◦  use wi-derived features which appear with rare words only 
◦  do not use all combinations of context (this is even “LC1”)  
◦  but then, use all of them, and compute the λi only once 

using the Generalized Iterative Scaling algorithm 
�  1Linguistically Correct  
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Feature Examples (Context) 

�  From A. Ratnaparkhi (EMNLP, 1996, UPenn) 
◦  ti = T, wi = X (frequency c > 4):  
�  ti = VBG, wi = selling 
◦  ti = T, wi contains uppercase char (rare):  
�  ti = NNP, tolower(wi) ≠ wi 

◦  ti = T, ti-1 = Y, ti-2 = X: 
�  ti = VBP, ti-2 = PRP,  ti-1 = RB 

� Other examples of possible features: 
◦  ti = T, tj is X, where j is the closest left position  where 

Y 
�  ti = VBZ, tj = NN, Y ⇔ tj ∈ {NNP, NNS, NN} 
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Feature Examples (Lexical/Unknown) 

�  From A. Ratnaparkhi : 
◦  ti = T, suffix(wi)= X (length X < 5):  
�  ti = JJ, suffix(wi) = eled (traveled, leveled, ....) 
◦  ti = T, prefix(wi)= X (length X < 5):  
�  ti = JJ, prefix(wi) = well (well-done, well-received,...) 
◦  ti = T, wi contains hyphen:  
�  ti = JJ, ‘-’ in wi  (open-minded, short-sighted,...) 

� Other possibility, for example: 
◦  ti = T, wi contains X:  
�  ti = NounPl, wi  contains umlaut (ä,ö,ü) (Wörter, Länge,...) 
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“Specialized” Word-based Features 

� List of words with most errors (WSJ, 
Penn Treebank): 
◦  about, that, more, up, ... 

� Add “specialized”, detailed features: 
◦  ti = T, wi = X, ti-1 = Y, ti-2 = Z:  
�  ti = IN, wi = about, ti-1 = NNS, ti-2 = DT  
◦  possible only for relatively high-frequency 

words 
�  Slightly better results (also, inconsistent 

[test] data) 
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Maximum Entropy Tagging: Results 

�  For details, see A Ratnaparkhi 
� Base experiment (133k words, < 3% 

unknown): 
◦  96.31% word accuracy 

�  Specialized features added: 
◦  96.49% word accuracy 

� Consistent subset (training + test) 
◦  97.04% word accuracy (97.13% w/specialized 

features) 
� This is the best result on WSJ so far. 



Discriminative models 
Shift-reduce parser Ratnaparkhi (98) 
�  Learns a distribution P(T|S) of parse trees given sentences 

using the sequence of actions of a shift-reduce parser 

�  Uses a maximum entropy model to learn conditional 
distribution of parse action given history 

�  Suffers from independence assumptions that actions are 
independent of future observations as CMM 

�  Higher parameter estimation cost to learn local maximum 
entropy models 

�  Lower but still good accuracy 86% - 87% labeled precision/
recall 
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Discriminative Models – Distribution Free 
Re-ranking 
�  Represent sentence-parse tree pairs by a feature vector 

F(X,Y) 
�  Learn a linear ranking model with parameters     using 

the boosting loss 

Model LP LR 

Collins 99 
(Generative) 

88.3% 88.1% 

Collins 00 
(BoostLoss) 

89.9% 89.6% 

13% error 
reduction 

Still very close in 
accuracy to 
generative model 
(Charniak 00) 

α



Comparison of Generative-
Discriminative Pairs  
Johnson (2001) have compared simple PCFG 

trained to maximize L(T,S) and L(T|S)  
A Simple PCFG has parameters  
 
Models: 
 
 
 
Results:  
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MLE 0.815 0.789 

MCLE 0.817 0.794 


