Logistic Regression

COSI 114 – Computational Linguistics James Pustejovsky

February 10, 2015 Brandeis University

Classification

- Learn: h: X->Y
 - X features
 - Y target classes
- Suppose you know P(Y|X) exactly, how should you classify?
 - Bayes classifier:

 $y^* = h_{bayes}(x) = \underset{y}{\operatorname{arg\,max}} P(Y = y | X = x)$ • Why?

Generative vs. Discriminative Classifiers - Intuition

Generative classifier, e.g., Naïve Bayes:

- Assume some functional form for P(X|Y), P(Y)
- Estimate parameters of P(X|Y), P(Y) directly from training data
- Use Bayes rule to calculate P(Y|X=x)
- This is 'generative' model
 - Indirect computation of P(Y|X) through Bayes rule
 - But, can generate a sample of the data, $P(X) = \sum P(y)P(X | y)$
- Discriminative classifier, e.g., Logistic Regression:
 - Assume some functional form for P(Y|X)
 - Estimate parameters of P(Y|X) directly from training data
 - This is the 'discriminative' model
 - Directly learn P(Y|X)
 - But cannot sample data, because P(X) is not available

The Naïve Bayes Classifier

- Given:
 - Prior P(Y)
 - n conditionally independent features X given the class Y
 - For each Xi, we have likelihood $P(X_i|Y)$

Decision rule:

$$y^{*} = h_{NB}(x) = \arg \max_{y} P(y)P(x_{1},...,x_{n} \mid y)$$

= $\arg \max_{y} P(y) \prod_{y} P(x_{i} \mid y)$
• If assumption holds, NB is optimal classifier!

History

- The concept of Maximum Entropy can be traced back along multiple threads to Jaynes 1957.
- Introduced <u>to NLP area</u> by Berger et.Al. (1996).
- Used in many NLP tasks: MT, Tagging, Parsing, PP attachment, LM, ...

Outline

- Modeling: Intuition, basic concepts,
 - •••
- Parameter training
- Feature selection
- Case study

Reference papers

- (Jaynes, 1957a)
- (Jaynes, 1957b)
- (Ratnaparkhi, 1997)
- (Ratnaparkhi, 1996)
- (Berger et. al., 1996)
- (Klein and Manning, 2003)

• Modeling

The basic idea

- Goal: estimate p
- Choose p with maximum entropy (or "uncertainty") subject to the constraints (or "evidence").

$$H(p) = -\sum_{x \in A \times B} p(x) \log p(x)$$

 $x = (a, b), where a \in A \land b \in B$

Setting

- From training data, collect (a, b) pairs:
 - a: thing to be predicted (e.g., a class in a classification problem)
 - b: the context
 - Ex: POS tagging:
 - a=NN
 - b=the words in a window and previous two tags

• Learn the prob of each (a, b): p(a, b)

Features in POS tagging (Ratnaparkhi, 1996)

Condition	Features	
w_i is not rare	$w_i = X$	$\& t_i = T$
w_i is rare	X is prefix of w_i , $ X \le 4$	$\& t_i = T$
	X is suffix of w_i , $ X \le 4$	$\& t_i = T$
	w_i contains number	$\& t_i = T$
	w_i contains uppercase character	& $t_i = T$
	w_i contains hyphen	$\& t_i = T$
$\forall w_i$	$t_{i-1} = X$	$\& t_i = T$
	$t_{i-2}t_{i-1} = XY$	$\& t_i = T$
	$w_{i-1} = X$	$\& t_i = T$
	$w_{i-2} = X$	$\& t_i = T$
	$w_{i+1} = X$	$\& t_i = T$
	$w_{i+2} = X$	$\& t_i = T$
		†

context (a.k.a. history)

allowable classes

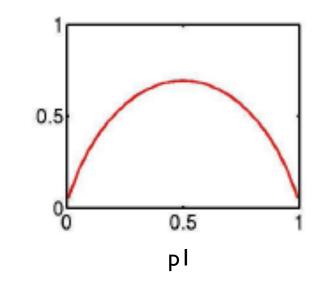
Maximum Entropy

- Why **maximum** entropy?
- Maximize entropy = Minimize commitment
- Model all that is known and assume nothing about what is unknown.
 - Model all that is known: satisfy a set of constraints that must hold
 - Assume nothing about what is unknown: choose the most "uniform" distribution
 choose the one with maximum entropy

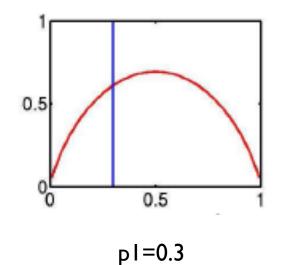
Ex1: Coin-flip example (Klein & Manning 2003)

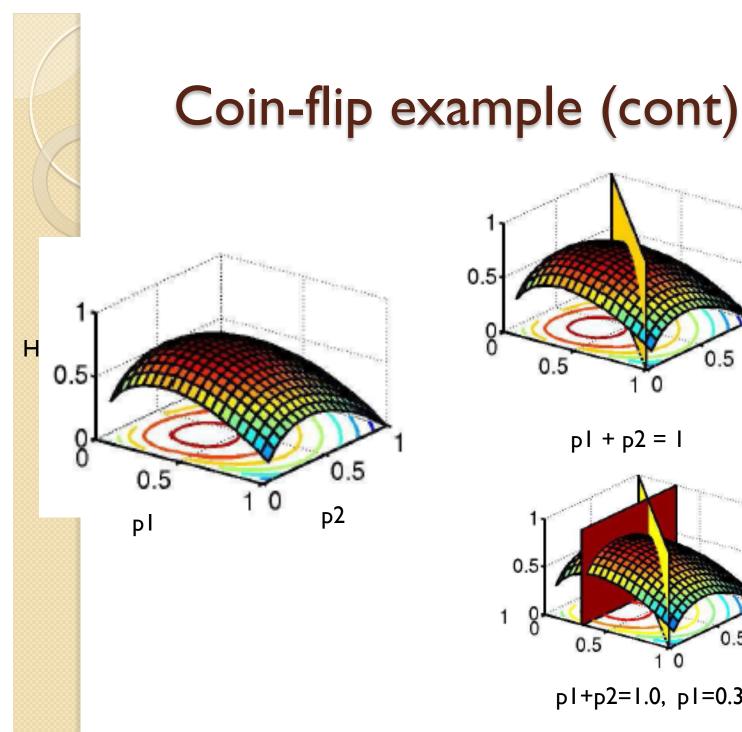
- Toss a coin: p(H)=p1, p(T)=p2.
- Constraint: p1 + p2 = 1
- Question: what's your estimation of p=(p1, p2)?
- Answer: choose the p that maximizes H(p)

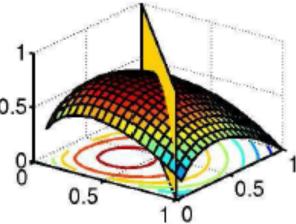
$$H(p) = -\sum_{x} p(x) \log p(x)$$



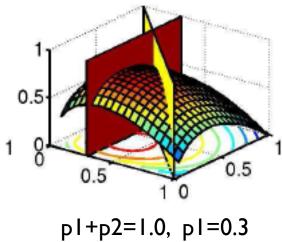
Н







pI + p2 = I



Ex2:An MT example (Berger et. al., 1996)

Possible translation for the word "in" is:

{dans, en, à, au cours de, pendant}

Constraint:

 $p(dans) + p(en) + p(a) + p(au \ cours \ de) + p(pendant) = 1$

Intuitive answer:

p(dans) = 1/5 p(en) = 1/5 p(a) = 1/5 $p(au \ cours \ de) = 1/5$ p(pendant) = 1/5

An MT example (cont)

Constraints:

$$p(dans) + p(en) = 3/10$$

 $p(dans) + p(en) + p(a) + p(au \ cours \ de) + p(pendant) = 1$

Intuitive answer:	p(dans)	-	3/20	
	p(en)	=	3/20	
	p(a)	=	7/30	
	p(au cours de)	=	7/30	
	p(pendant)	=	7/30	

An MT example (cont)

Constraints:

$$p(dans) + p(en) = 3/10$$

$$p(dans) + p(en) + p(a) + p(au \ cours \ de) + p(pendant) = 1$$

$$p(dans) + p(\dot{a}) = 1/2$$

Intuitive answer:

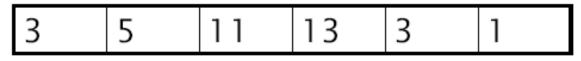
??

Ex3: POS tagging (Klein and Manning, 2003)

• Lets say we have the following event space:

NN NNS NNP NNPS VBZ VBD

... and the following empirical data:



Maximize H:

... want probabilities: E[NN,NNS,NNP,NNPS,VBZ,VBD] = 1

1/6 1/6 1/6 1/6 1/6 1/6

Ex3 (cont)

- Too uniform!
- N* are more common than V*, so we add the feature $f_N = \{NN, NNS, NNP, NNPS\}$, with $E[f_N] = 32/36$

NN	NNS	NNP	NNPS	VBZ	VBD
8/36	8/36	8/36	8/36	2/36	2/36

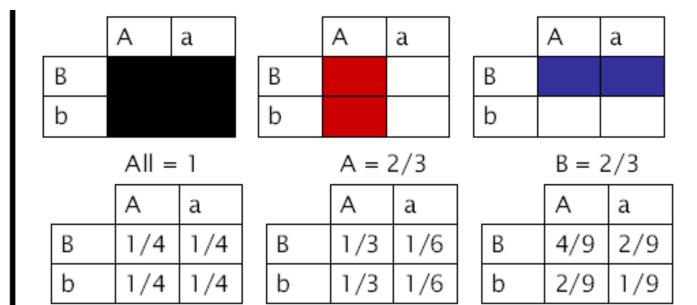
• ... and proper nouns are more frequent than common nouns, so we add $f_P = \{NNP, NNPS\}$, with $E[f_P] = 24/36$

 ... we could keep refining the models, e.g. by adding a feature to distinguish singular vs. plural nouns, or verb types.

Ex4: overlapping features (Klein and Manning, 2003)

Empirical

	А	a
В	1	1
b	1	0



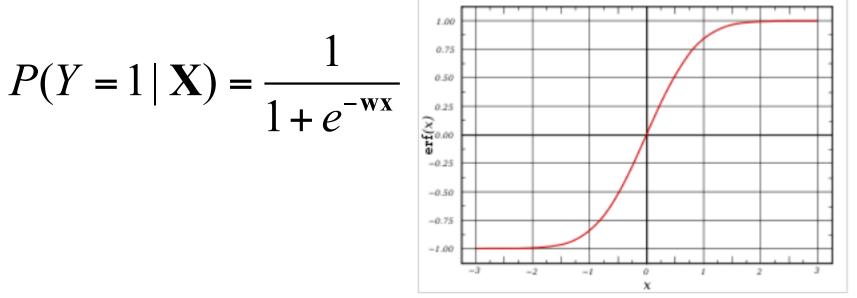
Modeling the problem

- Objective function: H(p)
- Goal: Among all the distributions that satisfy the constraints, choose the one, p*, that maximizes H(p).
 p* = arg max H(p)
 Question: How to represent constraints?

Logistic Regression

- Let X be the data instance, and Y be the class label: Learn P(Y|X) directly
 - Let W = (W1, W2, ... Wn), X=(X1, X2, ..., Xn), WX is the dot product

Sigmoid function:



Logistic Regression

- In logistic regression, we learn the conditional distribution P(y|x)
- Let p_y(x;w) be our estimate of P(y|x), where w is a vector of adjustable parameters.
- Assume there are two classes, y = 0 and y = 1 and

$$p_1(\mathbf{x}; \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}\mathbf{x}}}$$

This is equivalent to $p_0(\mathbf{x}; \mathbf{w}) = 1 - \frac{1}{1 + e^{-\mathbf{w}\mathbf{x}}}$

- That is, the log odds of class 1 is a linear function of x
- Q: How to find **W**?

$$\log \frac{p_1(\mathbf{x}; \mathbf{w})}{p_0(\mathbf{x}; \mathbf{w})} = \mathbf{w}\mathbf{x}$$

Constructing a Learning Algorithm

 The conditional data likelihood is the probability of the observed Y values in the training data, conditioned on their corresponding X values. We choose parameters w that satisfy

$$\mathbf{w} = \arg\max_{\mathbf{w}} \prod_{l} P(y^{l} \mid \mathbf{x}^{l}, \mathbf{w})$$

 where w = <w₀,w₁,...,w_n> is the vector of parameters to be estimated, y^I denotes the observed value of Y in the / th training example, and x^I denotes the observed value of X in the / th training example

Summary of Logistic Regression

- Learns the Conditional Probability Distribution P(y|x)
- Local Search.
 - Begins with initial weight vector.
 - Modifies it iteratively to maximize an objective function.
 - The objective function is the conditional log likelihood of the data – so the algorithm seeks the probability distribution P(y|x) that is most likely given the data.

What you should know about LR

- In general, NB and LR make different assumptions
 - NB: Features independent given class -> assumption on P(X|Y)
 - LR: Functional form of P(Y|X), no assumption on P(X|Y)
- LR is a linear classifier
 - decision rule is a hyperplane
- LR optimized by conditional likelihood
 - no closed-form solution
 - concave -> global optimum with gradient ascent

Relation Between

Naïve Bayes and Logistic Regression

- Naïve Bayes with Gaussian distributions for features (GNB), can be shown to given the same functional form for the conditional distribution P(Y|X).
 - But converse is not true, so Logistic Regression makes a weaker assumption.
- Logistic regression is a discriminative rather than generative model, since it models the conditional distribution P(Y|X) and directly attempts to fit the training data for predicting Y from X. Does not specify a full joint distribution.
- When conditional independence is violated, logistic regression gives better generalization if it is given sufficient training data.
- GNB converges to accurate parameter estimates faster (O(log n) examples for n features) compared to Logistic Regression (O(n) examples).
 - Experimentally, GNB is better when training data is scarce, logistic regression is better when it is plentiful.

Maximum Entropy

- Why <u>maximum</u> entropy??
- Recall: so far, we always "liked"
 - minimum entropy...
 - = minimum uncertainty
 - = maximum predictive power
 - distributions
 - always: relative to some "real world" data
 - always: clear relation between the data, model and parameters: e.g., n-gram language model
- This is still the case! But...

The Maximum Entropy Principle

Given some set of constraints ("relations", "facts"), which <u>must</u> hold (i.e., we believe they correspond to the real world we model):

What is the best distribution among those available?

 Answer: the one with <u>maximum entropy</u> (of such distributions satisfying the constraints)

• Why? ...philosophical answer:

- Occam's razor; Jaynes, ...:
 - make things as simple as possible, but not simpler;
 - do not pretend you know something you don't

Entropy

Entropy(self-information)

$$H(p) = H(X) = -\sum_{x} p(x) \log_2 p(x)$$

- the amount of information in a random variable
- average uncertainty of a random variable
- the average length of the message needed to transmit an outcome of that variable
- the size of the search space consisting of the possible values of a random variable and its associated probabilities

• Properties $H(X) \ge 0$ H(X) = 0

information)

: providing no new

increases with message length

Entropy Example

- Simplified Polynesian
 - letter frequencies

i	р	t	k	a	i	u
P(i)	I/8	I/4	1/8	I/4	I/8	1/8

• per-letter entropy

$$H(P) = -\sum_{i \in \{p, t, k, a, i, u\}} P(i) \log P(i) = 2.5 \text{ bits}$$

• Coding	5					
	p	t	k	a	i	u
	100	00	101	01	110	

Perplexity and Entropy

- Both measure the (un)certainty of a model
 - How many choices are there at any given point
- Perplexity is 2^(entropy) that is 2^{H(xIn,m)}
 - Manning & Schutze hypothesize speech people want to show bigger gains when they reduce perplexity
 - Lowering perplexity from 940 to 540 is more impressive then reducing cross entropy from 9.9 to 9.1 bits

Example

- Throwing the "unknown" die
 - o do not know anything → we should assume a fair die (uniform distribution ~ max. entropy distribution)
- Throwing unfair die
 - we know: p(4) = 0.4, p(6) = 0.2, nothing else
 - best distribution?
 - do not assume anything

about the rest

• What if we use instead:

دەر ما.	0.1	0.1	0.1	0.4	0.1	0.2
.D:						
	1	2	3	Δ	5	6

3

2

1	2	3	4	5	6	
0.25	0.05	0.05	0.4	0.05	0.2	2

4

5

6

Using Non-Maximum Entropy Distribution

• ME distribution: p

1	2	3	4	5	6
0.1	0.1	0.1	0.4	0.1	0.2

• Using instead:

P	• 1	2	3	4	5	6
	<u>0.25</u>	<u>0.05</u>	<u>0.05</u>	0.4	<u>0.05</u>	0.2

- Result depends on the real world:
 - real world ~ our constraints (p(4) = 0.4, p(6) = 0.2), everything else no specific constraints:
 - our average error: D(q||p) [recall: Kullback-Leibler distance]
 - real world ~ orig. constraints + p(I) = 0.25:
 - q is best (but hey, then we should have started with all 3 constraints!)

Things in Perspective: n-gram LM

Is an n-gram model a ME model?

- yes if we believe that trigrams are the all and only constraints
 - trigram model constraints: p(z|x,y) = c(x,y,z)/c(x,y)
- no room for any "adjustments"
 - like if we say p(2) = 0.7, p(6) = 0.3 for a throwing die
- Accounting for the apparent inadequacy:
 - smoothing
 - ME solution: (sort of) smoothing "built in"
 - constraints from training, maximize entropy on training + heldout

Features and Constraints

Introducing...

- binary valued selector functions ("features"): unusual!
 - $f_i(y,x) \in \{0,1\}$, where
 - $y \in Y$ (sample space of the <u>event being predicted</u>, e.g. words, tags, ...),
 - $x \in X$ (space of contexts, e.g. word/tag bigrams, unigrams, weather conditions, of - in general - unspecified nature/length/size)

constraints:

- $E_{p}(f_{i}(y,x)) = E'(f_{i}(y,x))$ (= empirical expectation)
- recall: expectation relative to distribution p: $E_p(f_i) = \sum_{y,x} p(x,y) f_i(y,x)$
- empirical expectation: $E'(f_i) = \sum_{y,x} p'(x,y) f_i(y,x) = |I/|T| \sum_{t=1..T} f_i(y_t,x_t)$
- notation: $E'(f_i(y,x)) = d_i$: constraints of the form $E_p(f_i(y,x)) = d_i$

Additional Constraint (Ensuring Probability Distribution)

The model's p(y|x) should be probability distribution:

• add an "omnipresent" feature $f_0(y,x) = 1$ for all y,x

- constraint: $E_p(f_0(y,x)) = I$
- Now, assume:
 - We know the set $S = \{f_i(y,x), i=0..N\} (|S| = N+1)$
 - We know all the constraints
 - i.e. a vector d_i, one for each feature, i=0..N
- Where are the parameters?
 - ...we do not even know the form of the model yet

The Model

Given the constraints, what is the form of the model which maximizes the entropy of p?

Use Lagrangian Multipliers:

• minimizing some function $\phi(z)$ in the presence of N constraints $g_i(z) = d_i$ means to minimize

$$\phi(\mathbf{x}) - \Sigma_{i=1..N} \lambda_i(g_i(\mathbf{x}) - d_i) \qquad (w.r.t. all \lambda_i and \mathbf{x})$$

• our case, minimize

$$\begin{split} A(p) &= -H(p) - \Sigma_{i=1..N} \lambda_i(E_p(f_i(y,x)) - d_i) \quad (w.r.t. \text{ all } \lambda_i \text{ and } p!) \\ \circ \text{ i.e. } \varphi(z) &= -H(p), g_i(z) = E_p(f_i(y,x)) \text{ (variable } z \sim \text{ distribution } p) \end{split}$$

Loglinear (Exponential) Model

- Minimize: for p, derive (partial derivation) and solve A'(p) = 0: $\delta[-H(p) - \sum_{i=0..N} \lambda_i (E_p(f_i(y,x)) - d_i)]/\delta p = 0$ $\delta[\sum p \log(p) - \sum_{i=0..N} \lambda_i ((\sum p f_i) - d_i)]/\delta p = 0$... $I + \log(p) - \sum_{i=0..N} \lambda_i f_i = 0$ $I + \log(p) = \sum_{i=1..N} \lambda_i f_i + \lambda_0$ $p = e^{\sum_{i=1..N} \lambda_i f_i + \lambda_0 - 1}$
- $p(y,x) = (I/Z) e^{\sum_{i=1..N} \lambda_i f_i(y,x)}$ (Z = e^{1- λ_0}, the normalization factor)

Maximizing the Lambdas: Setup

- Model: $p(y,x) = (I/Z) e^{\sum_{i=1..N} \lambda_i f_i(y,x)}$
- Generalized Iterative Scaling (G.I.S.)
 - obeys form of model & constraints:
 - $E_{p}(f_{i}(y,x)) = d_{i}$
 - G.I.S. needs, in order to work, $\forall y, x \Sigma_{i=1..N} f_i(y,x) = C$
 - to fulfill, define additional constraint:
 - $f_{N+1}(y,x) = C_{max} \sum_{i=1..N} f_i(y,x)$, where $C_{max} = max_{x,y} \sum_{i=1..N} f_i(y,x)$
 - \circ also, approximate (because $\Sigma_{\mathbf{x}\in\mathsf{All\ contexts}}$ is not (<u>never</u>) feasible)
 - $E_p(f_i) = \sum_{y,x} p(x,y) f_i(y,x) \approx 1/|T| \sum_{t=1..T} \sum_{y \in Y} p(y|x_t) f_i(y,x_t)$ (use p(y,x) = p(y|x)p'(x), where p'(x) is empirical i.e. from data T)

Generalized Iterative Scaling

- 1. Initialize $\lambda_i^{(1)}$ (any values, e.g. 0), compute d_i , i=1..N+1 2. Set iteration number n to 1.
- 3. Compute current model distribution expected values of all the constraint expectations

 $E_{p^{(n)}}(f_i)$ (based on $p^{(n)}(y|x_t)$)

[pass through data, see previous slide;

at each data position <u>t</u>, compute $p^{(n)}(y,x_t)$, normalize]

- 4. Update $\lambda_i^{(n+1)} = \lambda_i^{(n)} + (1/C) \log(d_i/E_{p^{(n)}}(f_i))$
- 5. Repeat 3.,4. until convergence.

Comments on Features

Advantage of "variable" (~ not fixed) context in f(y,x):

- <u>any</u> feature o.k. (examples mostly for tagging):
 - previous word's part of speech is VBZ or VB or VBP, y is DT
 - next word: capitalized, current: ".", and \underline{y} is a sentence break (SB detect)
 - <u>y</u> is MD, and the current sentence is a question (last word: question mark)
 - tag assigned by a different tagger is VBP, and \underline{y} is VB
 - it is before Thanksgiving and y is "turkey" (Language modeling)
 - even (God forbid!) manually written rules, e.g. <u>y</u> is VBZ and there is ...
- remember, the predicted event plays a role in a feature:
 - also, a set of events: f(y,x) is true if y is NNS or NN, and x is ...
 - x can be ignored as well ("unigram" features)

Feature Selection

- Advantage:
 - throw in many features
 - typical case: specify templates manually (pool of features P), fill in from data, possibly add some specific manually written features
 - let the machine select
 - Maximum Likelihood ~ Minimum Entropy on training data
 - after, of course, computing the λ_i 's using the MaxEnt algorithm
- Naive (greedy of course) algorithm:
 - start with empty S, add feature at a time (MLE after ME)
 - too costly for full computation ($|S| \times |P| \times |ME$ -time|)
 - Solution: see Berger & DellaPietras

Logistic Regression

Assumes a parametric form for directly estimating
 P(Y | X). For binary concepts, this is:

$$P(Y = 1 | X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

$$P(Y = 0 | X) = 1 - P(Y = 1 | X)$$

=
$$\frac{\exp(w_0 + \sum_{i=1}^n w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$

- Equivalent to a one-layer backpropagation neural net.
 - Logistic regression is the source of the sigmoid function used in backpropagation.
 - Objective function for training is somewhat different.

Logistic Regression as a Log-Linear Model

Logistic regression is basically a linear model, which is demonstrated by taking logs.

Assign label
$$Y = 0$$
 iff $1 < \frac{P(Y = 0 | X)}{P(Y = 1 | X)}$
 $1 < \exp(w_0 + \sum_{i=1}^n w_i X_i)$
 $0 < w_0 + \sum_{i=1}^n w_i X_i$
or equivalently $w_0 > \sum_{i=1}^n - w_i X_i$

 Also called a maximum entropy model (MaxEnt) because it can be shown that standard training for logistic regression gives the distribution with maximum entropy that is consistent with the training data.

Logistic Regression Training

 Weights are set during training to maximize the conditional data likelihood :

$$W \leftarrow \operatorname*{argmax}_{W} \prod_{d \in D} P(Y^{d} \mid X^{d}, W)$$

where D is the set of training examples and Y^d and X^d denote, respectively, the values of Y and X for example d.

 Equivalently viewed as maximizing the conditional log likelihood (CLL)

$$W \leftarrow \operatorname*{argmax}_{W} \sum_{d \in D} \ln P(Y^d \mid X^d, W)$$

Logistic Regression Training

- Like neural-nets, can use standard gradient descent to find the parameters (weights) that optimize the CLL objective function.
- Many other more advanced training methods are possible to speed convergence.
 - Conjugate gradient
 - Generalized Iterative Scaling (GIS)
 - Improved Iterative Scaling (IIS)
 - Limited-memory quasi-Newton (L-BFGS)

Preventing Overfitting in Logistic Regression

• To prevent overfitting, one can use regularization (a.k.a. smoothing) by penalizing large weights by changing the training objective: $W \leftarrow \operatorname*{argmax}_{W} \sum_{d \in D} \ln P(Y^d | X^d, W) - \frac{\lambda}{2} \|W\|^2$

Where $\boldsymbol{\lambda}$ is a constant that determines the amount of smoothing

 This can be shown to be equivalent to assuming a Guassian prior for W with zero mean and a variance related to 1/λ.

• Parameter estimation

Algorithms

- Generalized Iterative Scaling (GIS): (Darroch and Ratcliff, 1972)
- Improved Iterative Scaling (IIS): (Della Pietra et al., 1995)

GIS: setup

Requirements for running GIS:

• Obey form of model and constraints: $p(x) = \frac{e^{\sum_{j=1}^{k} \lambda_j f_j(x)}}{Z}$ $E_p f_j$

• An additional constraint:

Let
$$C = \max_{x \in \varepsilon} \sum_{j=1}^{k} f_j(x)$$

Add a new feature f_{k+1} :

$$\forall x \in \varepsilon \quad f_{k+1}(x) = C - \sum_{j=1}^{k} f_j(x)$$

 $E_p f_i = d_i$

 $\forall x \in \varepsilon \quad \sum_{i=1}^{k} f_{j}(x) = C$

GIS algorithm

- Compute d_i, j=1, ..., k+1
- Initialize $\lambda_{i}^{(1)}$ (any values, e.g., 0)
- Repeat until converge
 - For each j
 - Compute

where

$$E_{p^{(n)}}f_j = \sum_{x \in \varepsilon} p^{(n)}(x)f_j(x)$$
$$p^{(n)}(x) = \frac{e^{\sum_{j=1}^{k+1} \lambda_j^{(n)} f_j(x)}}{Z}$$

Update

 $\lambda_j^{(n+1)} = \lambda_j^{(n)} + \frac{1}{C} \left(\log \frac{d_i}{E_{n^{(n)}} f_j}\right)$

Approximation for calculating feature expectation

$$E_p f_j = \sum_{x \in \varepsilon} p(x) f_j(x) = \sum_{a \in A, b \in B} p(a, b) f_j(a, b)$$

$$= \sum_{a \in A, b \in B} p(b) p(a \mid b) f_j(a, b)$$

$$\approx \sum_{a \in A, b \in B} \widetilde{p}(b) p(a \mid b) f_j(a, b)$$

$$= \sum_{b \in B} \widetilde{p}(b) \sum_{a \in A} p(a \mid b) f_j(a, b)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{a \in A} p(a \mid b_i) f_j(a, b_i)$$

Properties of GIS

- $L(p^{(n+1)}) >= L(p^{(n)})$
- The sequence is guaranteed to converge to p*.
- The converge can be very slow.
- The running time of each iteration is O(NPA):
 - N: the training set size
 - P: the number of classes
 - A: the average number of features that are active for a given event (a, b).

IIS algorithm

Compute d_j, j=1, ..., k+1 and

$$f^{\#}(x) = \sum_{j=1}^{k} f_{j}(x)$$

- Initialize $\lambda_i^{(1)}$ (any values, e.g., 0)
- Repeat until converge
 - For each j
 - Let $\Delta \lambda_i$ be the solution to

$$\sum_{x \in \varepsilon} p^{(n)}(x) f_j(x) e^{\Delta \lambda_j f^{\#}(x)} = d_j$$

Update

$$\lambda_{j}^{(n+1)} = \lambda_{j}^{(n)} + \Delta \lambda_{j}$$

Calculating

 $\Delta \lambda_i$

If $\forall x \in \varepsilon$ $\sum_{i=1}^{k} f_i(x) = C$

Then $\Delta \lambda_j = \frac{1}{C} (\log \frac{d_i}{E_{n^{(n)}} f_i})$

GIS is the same as IIS

Else

must be calcuated numerically.

• Feature selection

Feature selection

- Throw in many features and let the machine select the weights
 - Manually specify feature templates
- Problem: too many features
- An alternative: greedy algorithm
 - Start with an empty set S
 - Add a feature at each iteration

Notation

With the feature set S:

$$\begin{array}{lll} \mathcal{C}(\mathcal{S}) & \equiv & \{p \in \mathcal{P} \mid p(f) = \tilde{p}(f) & \text{for all } f \in \mathcal{S} \} \\ p_{\mathcal{S}} & \equiv & \operatorname*{argmax}_{p \in \mathcal{C}(\mathcal{S})} H(p) \end{array}$$

After adding a feature:

$$\begin{aligned} \mathcal{C}(\mathcal{S} \cup \hat{f}) &\equiv \{ p \in \mathcal{P} \mid p(f) = \tilde{p}(f) \text{ for all } f \in \mathcal{S} \cup \hat{f} \} \\ p_{\mathcal{S} \cup \hat{f}} &\equiv \operatorname*{argmax}_{p \in \mathcal{C}(\mathcal{S} \cup \hat{f})} \end{aligned}$$

The gain in the log-likelihood of the training data:

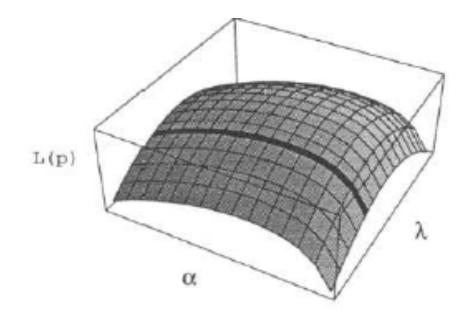
$$\Delta L(\mathcal{S}, \hat{f}) \equiv L(p_{\mathcal{S} \cup \hat{f}}) - L(p_{\mathcal{S}})$$

Feature selection algorithm (Berger et al., 1996)

- Start with S being empty; thus p_s is uniform.
- Repeat until the gain is small enough
 - For each candidate feature f
 - Computer the model $p_{S \cup f}$ using IIS
 - Calculate the log-likelihood gain
 - Choose the feature with maximal gain, and add it to S

Approximating gains (Berger et. al., 1996)

 Instead of recalculating all the weights, calculate only the weight of the new feature.



Training a MaxEnt Model

Scenario #1:

- Define features templates
- Create the feature set
- Determine the optimum feature weights via GIS or IIS

Scenario #2:

- Define feature templates
- Create candidate feature set S
- At every iteration, choose the feature from S (with max gain) and determine its weight (or choose top-n features and their weights).

•° Case study

POS tagging (Ratnaparkhi, 1996)

- Notation variation:
 - f_i(a, b): a: class, b: context
 - $f_i(h_i, t_i)$: h: history for ith word, t: tag for ith word
- History:

$$h_{i} = \{w_{i}, w_{i-1}, w_{i-2}, w_{i+1}, w_{i+2}, t_{i-1}, t_{i-2}\}$$

- Training data:
 - Treat it as a list of (h_i, t_i) pairs.
 - How many pairs are there?

Using a MaxEnt Model

- Modeling:
- Training:
 - Define features templates
 - Create the feature set
 - Determine the optimum feature weights via GIS or IIS
- Decoding:

Modeling

 $P(t_1,...,t_n | w_1,...,w_n)$ $=\prod_{i=1}^{n} p(t_i \mid w_1^n, t_1^{i-1})$ $\approx \prod_{i=1}^{n} p(t_i \mid h_i)$

$$p(t \mid h) = \frac{p(h,t)}{\sum_{t \in T} p(h,t')}$$

Training step 1: define feature templates

Condition	Features	
w_i is not rare	$w_i = X$	$\& t_i = T$
w_i is rare	X is prefix of w_i , $ X \le 4$	$\& t_i = T$
	X is suffix of w_i , $ X \le 4$	$\& t_i = T$
	w_i contains number	$\& t_i = T$
	w_i contains uppercase character	& $t_i = T$
	w_i contains hyphen	$\& t_i = T$
$\forall w_i$	$t_{i-1} = X$	$\& t_i = T$
	$t_{i-2}t_{i-1} = XY$	$\& t_i = T$
	$w_{i-1} = X$	$\& t_i = T$
	$w_{i-2} = X$	$\& t_i = T$
	$w_{i+1} = X$	$\& t_i = T$
	$w_{i+2} = X$	$\& t_i = T$
		Ť

History h_i

Tag t_i

Step 2: Create feature set

Word:	the	stories	about	well-heeled	communities	and	developers
Tag:	DT	NNS	IN	JJ	NNS	CC	NNS
Position:	1	2	3	4	5	6	7

$w_i = about$	$\& t_i = IN$
$w_{i=1} = \text{stories}$	$\& t_i = IN$
$w_{i=2} = the$	$\& t_i = IN$
$w_{i+1} = well-heeled$	$\& t_i = IN$
$w_{i+2} = \text{communities}$	$\& t_i = IN$
$t_{i-1} = NNS$	$\& t_i = IN$
$t_{i-2}t_{i-1} = DT$ NNS	$\& t_i = IN$

Collect all the features from the training data
 Throw away features that appear less than 10 times

Step 3: determine the feature weights

• GIS

- Training time:
 - Each iteration: O(NTA):
 - N: the training set size
 - T: the number of allowable tags
 - A: average number of features that are active for a (h, t).
 - About 24 hours on an IBM RS/6000 Model 380.
- How many features?

Decoding: Beam search

- Generate tags for w₁, find top N, set s_{1j} accordingly, j=1, 2, ..., N
- For i=2 to n (n is the sentence length)
 - For j=I to N
 - Generate tags for wi, given s_{(i-1)j} as previous tag context
 - Append each tag to $s_{(i-1)j}$ to make a new sequence.
 - Find N highest prob sequences generated above, and set s_{ij} accordingly, j=1, ..., N
- Return highest prob sequence s_{n1}.

Beam search

- Beam inference:
 - At each position keep the top k complete sequences.
 - Extend each sequence in each local way.
 - The extensions compete for the *k* slots at the next position.
- Advantages:
 - Fast; and beam sizes of 3-5 are as good or almost as good as exact inference in many cases.
 - Easy to implement (no dynamic programming required).
- Disadvantage:
 - Inexact: the globally best sequence can fall off the beam.

Viterbi search

- Viterbi inference:
 - Dynamic programming or memoization.
 - Requires small window of state influence (e.g., past two states are relevant).
- Advantage:
 - Exact: the global best sequence is returned.
- Disadvantage:
 - Harder to implement long-distance state-state interactions (but beam inference tends not to allow long-distance resurrection of sequences anyway).

Decoding (cont)

- Tags for words:
 - Known words: use tag dictionary
 - Unknown words: try all possible tags
- Ex: "time flies like an arrow"
- Running time: O(NTAB)
 - N: sentence length
 - B: beam size
 - T: tagset size
 - A: average number of features that are active for a given event

Experiment results

MF tag	0	7.66	
Markov 1-gram	в	6.74	
Markov 3-gram	w	3.7	
Markov 3-gram	в	3.64	
Decision tree	М	3.5	
Transformation	в	3.39	
Maxent	R	3.37	
Maxent	0	3.11	$\pm .07$
Multi-tagger Voting	В	2.84	$\pm .03$

Comparison with other learners

- HMM: MaxEnt uses more context
- SDT: MaxEnt does not split data
- TBL: MaxEnt is statistical and it provides probability distributions.

MaxEnt Summary

- Concept: choose the p* that maximizes entropy while satisfying all the constraints.
- Max likelihood: p* is also the model within a model family that maximizes the log-likelihood of the training data.
- Training: GIS or IIS, which can be slow.
- MaxEnt handles overlapping features well.
- In general, MaxEnt achieves good performances on many NLP tasks.

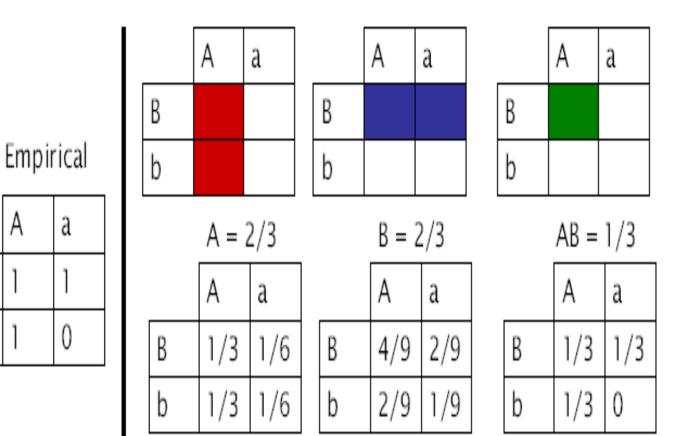
• Additional slides

A

1

1

Ex4 (cont)



??

Multinomial Logistic Regression

- Logistic regression can be generalized to multi-class problems (where Y has a multinomial distribution).
- Effectively constructs a linear classifier for each category.

The Task, Again

• Recall:

- tagging ~ morphological disambiguation
- tagset $V_T \subset (C_1, C_2, ..., C_n)$
 - C_i morphological categories, such as POS, NUMBER, CASE, PERSON, TENSE, GENDER, ...
- \circ mapping w \rightarrow {t ${\in}V_T$ } exists
 - restriction of Morphological Analysis: $A^+ \rightarrow 2^{(L,C1,C2,...,Cn)}$ where A is the language alphabet, L is the set of lemmas
- extension to punctuation, sentence boundaries (treated as words)

Maximum Entropy Tagging Model

General

 $p(y,x) = (I/Z) e^{\sum_{i=1..N} \lambda_i f_i(y,x)}$

Task: find λ_i satisfying the model \underline{and} constraints

• $E_p(f_i(y,x)) = d_i$

where

• $d_i = E'(f_i(y,x))$ (empirical expectation i.e. feature frequency)

Tagging

 $\begin{array}{l} \mathsf{p}(\mathsf{t},\mathsf{x}) = (\mathsf{I}/\mathsf{Z}) \; \mathsf{e}^{\sum_{i=1..N}\lambda_i f_i(\mathsf{t},\mathsf{x})} \left(\lambda_0 \text{ might be extra: cf. } \mu \text{ in AR(?)} \right. \\ \left. \mathsf{t} \in \mathsf{Tagset}, \end{array}$

• $x \sim \text{context}$ (words and tags alike; say, up to three positions R/L)

Features for Tagging

Context definition

- two words back and ahead, two tags back, current word:
 - $\mathbf{x}_{i} = (\mathbf{w}_{i-2}, \mathbf{t}_{i-2}, \mathbf{w}_{i-1}, \mathbf{t}_{i-1}, \mathbf{w}_{i}, \mathbf{w}_{i+1}, \mathbf{w}_{i+2})$
- features may ask any information from this window
 - e.g.:
 - previous tag is DT
 - previous two tags are PRP\$ and MD, and the following word is "be"
 - current word is "an"
 - suffix of current word is "ing"
 - do not forget: feature also contains t_i, the current tag:
 - feature #45: suffix of current word is "ing" & the tag is VBG \Leftrightarrow f₄₅ = 1

Feature Selection

- The PC¹ way (see also yesterday's class):
 - (try to) test all possible feature combinations
 - features may <u>overlap</u>, or be <u>redundant</u>; also, <u>general</u> or <u>specific</u> impossible to select manually
 - greedy selection:
 - add one feature at a time, test if (good) improvement:
 - keep if yes, return to the pool of features if not
 - even this is costly, unless some shortcuts are made
 - see Berger & DPs for details
- The other way:
 - use some heuristic to limit the number of features
- ^I Politically (or, Probabilistically-stochastically) Correct

Limiting the Number of Features

- Always do (regardless whether you're PC or not):
 - use contexts which appear in the training data (lossless selection)
- More or less PC, but entails huge savings (in the number of features to estimate λ_i weights for):
 - $^{\circ}$ use features appearing only L-times in the data (L ~ 10)
 - use w_i-derived features which appear with rare words only
 - do not use all combinations of context (this is even "LC¹")
 - $^\circ\,$ but then, use all of them, and compute the λ_i only once using the Generalized Iterative Scaling algorithm

^ILinguistically Correct

Feature Examples (Context)

• From A. Ratnaparkhi (EMNLP, 1996, UPenn)

• $t_i = T, w_i = X$ (frequency c > 4):

• $t_i = VBG, w_i = selling$

•
$$t_i = NNP$$
, tolower(w_i) $\neq w_i$

•
$$t_i = T, t_{i-1} = Y, t_{i-2} = X$$
:

$$t_i = VBP, t_{i-2} = PRP, t_{i-1} = RB$$

- Other examples of possible features:
 - $t_i = T, t_j$ is X, where j is the closest left position where Y

• $t_i = VBZ, t_i = NN, Y \Leftrightarrow t_i \in \{NNP, NNS, NN\}$

Feature Examples (Lexical/Unknown)

- From A. Ratnaparkhi :

 t_i = T, suffix(w_i) = X (length X < 5):
 t_i = JJ, suffix(w_i) = eled (traveled, leveled,)
 t_i = T, prefix(w_i) = X (length X < 5):
 t_i = JJ, prefix(w_i) = well (well-done, well-received,...)
 t_i = T, w_i contains hyphen:
 t_i = JJ, '-' in w_i (open-minded, short-sighted,...)

 Other possibility, for example:

 t_i = T, w_i contains X:
 - $t_i = NounPl, w_i$ contains umlaut (ä,ö,ü) (Wörter, Länge,...)

"Specialized" Word-based Features

- List of words with most errors (WSJ, Penn Treebank):
 - about, that, more, up, ...
- Add "specialized", detailed features:

$$t_i = T, w_i = X, t_{i-1} = Y, t_{i-2} = Z$$
:

- $t_i = IN, w_i = about, t_{i-1} = NNS, t_{i-2} = DT$
- possible only for relatively high-frequency words
- Slightly better results (also, inconsistent [test] data)

Maximum Entropy Tagging: Results

For details, see A Ratnaparkhi

Base experiment (133k words, < 3% unknown):

• 96.31% word accuracy

- Specialized features added:
 - 96.49% word accuracy
- Consistent subset (training + test)
 - 97.04% word accuracy (97.13% w/specialized features)

This is the best result on WSJ so far.

Discriminative models

Shift-reduce parser Ratnaparkhi (98)

• Learns a distribution P(T|S) of parse trees given sentences using the sequence of actions of a shift-reduce parser $P(T|S) = \prod_{n=1}^{n} P(a \mid a \mid a \mid S)$

$$P(T \mid S) = \prod_{i=1}^{n} P(a_i \mid a_1 \dots a_{i-1}S)$$

- Uses a maximum entropy model to learn conditional distribution of parse action given history
- Suffers from independence assumptions that actions are independent of future observations as CMM
- Higher parameter estimation cost to learn local maximum entropy models
- Lower but still good accuracy 86% 87% labeled precision/ recall

Discriminative Models – Distribution Free Re-ranking

- Represent sentence-parse tree pairs by a feature vector F(X,Y)
- Learn a linear ranking model with parameters $\overline{\alpha}$ using the boosting loss

Model	LP	LR
Collins 99 (Generative)	88.3%	88.1%
Collins 00 (BoostLoss)	89.9%	89.6%

13% error reduction

Still very close in accuracy to generative model (Charniak 00)

Comparison of Generative-Discriminative Pairs

Johnson (2001) have compared simple PCFG trained to maximize L(T,S) and L(T|S)

A Simple PCFG has parameters

$$\Theta = \{ \theta_{ij} = P(A_i - > \alpha_j \mid A_i), \sum_{j=1...m_i} \theta_{ij} = 1, \forall i \}$$

$$MLE = \arg \max_{\theta} \sum_{i=1..n} Log(P(T_i, S_i)), \theta \in \Theta$$

$$MCLE = \arg \max_{\theta} \sum_{i=1..n} Log(P(T_i \mid S_i)), \theta \in \Theta$$

$$Results: \qquad \boxed{Model \quad LPrecision \quad LRecall}$$

$$MLE \quad 0.815 \quad 0.789$$

$$MCLE \quad 0.817 \quad 0.794$$