Logistic Regression

COSI 14 — Computational Linguistics
James Pustejovsky

February 10,2015

Brandeis University

Classification

e Learn: h: X->Y
o X — features
o Y —target classes
e Suppose you know P(Y|X) exactly, how
should you classify?
> Bayes classifier:

y =h, . (x)=argmax P(Y = y| X =x)
Why?by y

Generative vs. Discriminative
Classifiers - Intuition

* Generative classifier, e.g., Naive Bayes:
> Assume some functional form for P(X]Y), P(Y)
o Estimate parameters of P(X|Y), P(Y) directly from training data
o Use Bayes rule to calculate P(Y|X=x)

o This is ‘generative’ model
Indirect computation of P(Y|X) through Bayes rule

But, can generate a sample of thedata, P(X) = EP(y)P(X |)
Y

» Discriminative classifier, e.g., Logistic Regression:
> Assume some functional form for P(Y | X)
o Estimate parameters of P(Y|X) directly from training data

o This is the ‘discriminative’ model
Directly learn P(Y|X)
But cannot sample data, because P(X) is not available

The Naive Bayes Classifier

e Given:
° Prior P(Y)

> n conditionally independent features X given the
class Y

> For each Xi, we have likelihood P(X.|Y)
e Decision rule:

Y =hy,(x)=argmax P(y)P(x,,....x, | y)
Y

= argmax P()[[P(x, | »)
e If assumptiontiolds, NB is optimal classifier!

History

* The concept of Maximum Entropy can be
traced back along multiple threads to

Jaynes 1957.

¢ Introduced to NLP area by Berger et. Al.
(1996).

* Used in many NLP tasks: MT, Tagging,
Parsing, PP attachment, LM, ...

Qutline

* Modeling: Intuition, basic concepts,

* Parameter training
* Feature selection
e Case study

Reference papers

* (Jaynes, 19573)

* (Jaynes, 1957b)

* (Ratnaparkhi, 1997)

* (Ratnaparkhi, 1996)

* (Berger et.al., 1996)

¢ (Klein and Manning, 2003)

Modeling

The basic idea

* Goal: estimate p

» Choose p with maximum entropy (or “uncertainty’)
subject to the constraints (or “evidence”).

H(p)=- ") p(x)log p(x)

xX&EAxB

x=(a,b), where a€AANbEB

Setting

* From training data, collect (a, b) pairs:

° a: thing to be predicted (e.g.,a class in a
classification problem)

> b: the context
> Ex: POS tagging:
a=NN
b=the words in a window and previous two tags

 Learn the prob of each (a, b): p(a, b)

Features in POS tagging
(Ratnaparkhi, 1996)

Condition Features

w; 1s not rare | w; = X L, =T
w; 18 rare X 1s prefix of w;, |[X| <4 Lt =T
X 15 suffix of v, |[X| < 4 L, =T
w; contains number L, =T
w; contains uppercase character & f;, =T
w; contains hyphen L6 =T
Vo fiw1 = X Lti=T
fiootin: = XY Lt;, =T
Wiw1 =X =T
Wjws =X Lti=T
wip =X L, =T
Wwips =X L, =T

I T

context (a.k.a. history) allowable classes

Maximum Entropy

* Why maximum entropy?
e Maximize entropy = Minimize commitment

* Model all that is known and assume nothing
about what is unknown.

> Model all that is known: satisfy a set of constraints
that must hold

> Assume nothing about what is unknown:
choose the most “uniform” distribution
=>» choose the one with maximum entropy

Ex|: Coin-flip example
(Klein & Manning 2003)

Toss a coin: p(H)=pl, p(T)=p2.

Constraint:pl + p2 = |

Question: what’ s your estimation of p=(p|, p2)?
Answer: choose the p that maximizes H(p)

H(p) =~ p(x)log p(x)

1

0.5

0.5

0.5

p1=0.3

Coin-flip example (cont)

pl+p2=1.0, p1=0.3

Ex2:An MT example
(Berger et.al., 1996)

Possible translation for the word “in” is:

{dans, en, a, au cours de, pendant}

Constraint:

p(dans) + plen) + p(a) + p(au cours de) + p(pendant) =1

Intuitive answer: p(dans) = 1/5
plen) = 1/5

play = 1/5

plau cours de) = 1/5

p(pendant) = 1/5

An MT example (cont)

Constraints:

p(dans) + p(en) + p(a) + plau cours de) + p(pendant)

Intuitive answer:

p(dans
p(en
pla

plau cours de

p(pendant

)
)
)
)
)

p(dans) + p(en)

|

3/20
3/20
7/30
7 /30
7 /30

3/10
1

An MT example (cont)

Constraints:

pldans) + p(en) = 3/10
p(dans) + p(en) + p(a) + p(au cours de) + p(pendant) = 1
1/2

p(dans) + p(a)

Intuitive answer:

n

Ex3: POS tagging
(Klein and Manning, 2003)

Lets say we have the following event space:

NN [NNS [NNP [NNPS [vBZ [vBD |

.. and the following empirical data:

3 s [i3 3 1]

Maximize H:

1/e |1/e |1/e |1/e [1/e |1/e |

... want probabilities: E[NN,NNS,NNP,NNPS,VBZ,VBD] = 1
1/6 [1/6 [1/6 [1/6 [1/6 [1/6]

Ex3 (cont)

Too uniform!

N* are more common than V*, so we add the feature f,, = {NN,
NNS, NNP, NNPS}, with E[f,] =32/36

NN |NNS |[NNP [NNPS |VBZ |VBD
8/36 |8/36 |8/36 |8/36|2/36 |2/36

... and proper nouns are more frequent than common nouns,
so we add £, = {NNP, NNPS}, with E[f;] =24/36

‘4/36 ‘4/36 ‘12/36‘12/36‘2/36 ‘2/36 \

« ... we could keep refining the models, e.g. by adding a feature
to distinguish singular vs. plural nouns, or verb types.

Ex4: overlapping features
(Klein and Manning, 2003)

A a A a
B B B
Empirical N
A |a All = 1 A=2/3 B = 2/3
! ! A a A a A a
! & B 1/4|1/4 B 1/311/6 B 4/9 12/9

b 1/4 [1/4 b 1/311/6 b 2/911/9

Modeling the problem

* Objective function: H(p)

e Goal:Among all the distributions that satisfy the
constraints, choose the one, p*, that maximizes H(p).

p*=argmax H(p)

» Question: How to repfésent constraints?

Logistic Regression

* Let X be the data instance, and Y be the class
label: Learn P(Y|X) directly

o Let W = (W1, W2, ... Wn), X=(X1, X2, ..., Xn), WX is the
dot product

o Sigmoid function:

1

l+e™"

PY =1|X) =

X

x)

Logistic Regression

* In logistic regression, we learn the conditional
distribution P(y|x)

* Let p (x;w) be our estimate of P(y|x), where wis a
vector of adjustable parameters.

e Assume there are two classes,y=0andy =1 and

1

—WX

P(X; W) =
l+e 1

 This is equivalent to Do (x;w)=1-

— WX

l+e

* Thatis, the log odds of class 1 is a linear function of x

e Q: How to find W? X; W
log pl() = WX

Do (X; W)

Constructing a Learning Algorithm

* The conditional data likelihood is the probability
of the observed Y values in the training data,
conditioned on their corresponding X values. We
choose parameters w that satisfy

W = arg max HP(yl X', W)
W z

* where w = <w,w, ,...,w_>is the vector of
parameters to be estimated, y' denotes the
observed value of Y in the / th training example,
and x' denotes the observed value of X in the / th
training example

Summary of Logistic Regression

* Learns the Conditional Probability
Distribution P(y|x)

* Local Search.
> Begins with initial weight vector.
> Modifies it iteratively to maximize an

(@)
o T
I

pjective function.
he objective function is the conditional log

kelihood of the data — so the algorithm seeks

the probability distribution P(y|x) that is most
likely given the data.

What you should know about LR

* In general, NB and LR make different
assumptions

> NB: Features independent given class ->
assumption on P(X|Y)
> LR: Functional form of P(Y|X), no assumption on
P(X]Y)
* LR is a linear classifier
> decision rule is a hyperplane

* LR optimized by conditional likelihood
> no closed-form solution
> concave -> global optimum with gradient ascent

Relation Between

Naive Bayes and Logistic Regression

Naive Bayes with Gaussian distributions for features (GNB),

can be shown to given the same functional form for the

conditional distribution P(Y|X).

° But converse is not true, so Logistic Regression makes a weaker
assumption.

Logistic regression is a discriminative rather than

generative model, since it models the conditional distribution

P(Y|X) and directly attempts to fit the training data for

predicting Y from X. Does not specify a full joint distribution.

When conditional independence is violated, logistic
regression gives better generalization if it is given sufficient
training data.

GNB converges to accurate parameter estimates faster

(O(log n) examples for n features) compared to Logistic

Regression (O(n) examples).

> Experimentally, GNB is better when training data is scarce, logistic
regression is better when it is plentiful.

Maximum Entropy

* Why maximum entropy??

 Recall: so far, we always “liked”

° minimum entropy...

= minimum uncertainty
= maximum predictive power
... distributions

> always: relative to some “real world” data
> always: clear relation between the data, model and

parameters: e.g., n-gram language model

e This is still the case! But...

The Maximum Entropy Principle

» Given some set of constraints (" relations”, “facts”),
which must hold (i.e., we believe they correspond to
the real world we model):

What is the best distribution among those available!?
* Answer: the one with maximum entropy
(of such distributions satisfying the constraints)

* Why? ...philosophical answer:

J
> Occam's razor; Jaynes, ...

make things as simple as possible, but not simpler;
do not pretend you know something you don'’t

Entropy
e Entropy(self-information)

H(p)=H(X)= EP(X) log, p(x)
o the amount of mformatlon in a random variable

° average uncertainty of a random variable

° the average length of the message needed to transmit
an outcome of that variable

o the size of the search space consisting of the possible
values of a random variable and its associated
probabilities

* Properties
H(X)=z0 H(X) —(0
information)
increases with message length

: providing no new

Entropy Example

 Simplified Polynesian
o letter frequencies

i P t k a i u

P(i) 1/8 1/4 1/8 1/4 1/8 1/8

° per-letter entropy

HP)=- Y P(i)log P(i) = 2.5 bits

iE{p,t.k,a,iu}

> Coding
P t k a i u

100 00 101 ol 110 11

Perplexity and Entropy

* Both measure the (un)certainty of a
model

> How many choices are there at any given
point

o Perplexity is 2(nrom) that is 2HxInm)

> Manning & Schutze hypothesize speech people
want to show bigger gains when they reduce
perplexity

> Lowering perplexity from 940 to 540 is more

impressive then reducing cross entropy from
9.9 to 9.1 bits

Example

e Throwing the “unknown” die

> do not know anything — we should assume a fair die
(uniform distribution ~ max. entropy distribution)

e Throwing unfair die

> we know: p(4) = 0.4, p(6) = 0.2, nothing else

> best distribution?
> do not assume anything

about the rest}

e What if we use instead:

1 2 3 4 5 6
0.1 | 0.1 { 0.1 | 04 | 0.1 | 0.2
1 2 3 4 5 6
0.25]10.05]1005] 04 |0.05] 0.2

™~

Using Non-Maximum Entropy

Distribution
 ME distribution: pp 1 | 2 | 3 | 4 | 5 | 6
0.1 | 0.1 | 0.1 | 04 | 0.1 | 0.2
* Using instead: 1T 2 3415] 6
0.25 1 0.05 10.05| 04 | 0.05] 0.2
» Result depends on the real world:

o real world ~ our constraints (p(4) = 0.4, p(6) = 0.2),
everything else no specific constraints:

our average error: D(q||p) [recall: Kullback-Leibler distance]
o real world ~ orig. constraints + p(l) = 0.25:

q is best (but hey, then we should have started with all 3
constraints!)

Things in Perspective: n-gram LM

¢ Is an n-gram model a ME model?

> yes if we believe that trigrams are the all and only
constraints

trigram model constraints: p(z|x,y) = c(x,y,z)/c(x,y)
° no room for any “adjustments”
like if we say p(2) = 0.7, p(6) = 0.3 for a throwing die

* Accounting for the apparent inadequacy:

> smoothing

> ME solution: (sort of) smoothing “built in”

constraints from training, maximize entropy on training +
heldout

Features and Constraints

* Introducing...

° binary valued selector functions (“features’):
SO

f(y,x) < {0,1}, where N
* y €Y (sample space of the event being predlctedéwords tags, ..

- x ©X (space of contexts, e.g. word/tag bigrams, unigrams, weather
conditions, of - in general - unspecified nature/length/size)

° constraints:
E.(f(y.x)) = E'(f(y,x)) (= empirical expectation)

recall: expectation relative to distribution p: E (f) = Zy’xp(x,y)fi(y,x)
empirical expectation: E'(f) = Z,,p' (xy)fi(yx) = V[T| Z,-) fi(y,xo)
notation: E'(f(y,x)) = d;: constraints of the form E (f(y,x)) = d

Additional Constraint (Ensuring
Probability Distribution)

» The model’s p(y|x) should be probability
distribution:

° add an “omnipresent” feature fy(y,x) = | for all y,x
° constraint: E (fo(y,x)) = |
* Now, assume:
> We know the set S = {f.(y,x), i=0..N} (|S| = N+1)
> We know all the constraints
i.e.a vector d, one for each feature, i=0..N

* Where are the parameters!?
° ...we do not even know the form of the model yet

The Model

* Given the constraints, what is the form of the model
which maximizes the entropy of p!?
* Use Lagrangian Multipliers:

° minimizing some function ¢(z) in the presence of N
constraints g(z) = d. means to minimize

O(x) - 2= NAi(8i(X) - dj) (w.r.t.all A;and x)
° our case, minimize
A(P) = -H(P) - Zoy \ME (1)) - d) (wrt.all &, and pl)
° i.e.§(z) = -H(p), g(z)= E,(fi(y:x)) (variable z ~ distribution p)

Loglinear (Exponential) Model

e Minimize: for p, derive (partial derivation) and
solve A'(p) =

O[-H(p) - Zizo nM(ES(fi(y:X)) - d)]/op =0
o[2 p log(p) - Zizo \M((X p f) - d)]/op =0

|+log(P) o.M =0

| +log(p) = 2 \M fi ¥ Ao
p = @S- fitho- |

¢ P()’,X) = (|/ Z) ezi:l--infi(y’X) (Z = e '"™, the normalization factor)

Maximizing the Lambdas: Setup

» Model: p(y,x) = (1/Z) e>=1nMiyx)
* Generalized Iterative Scaling (G.1.S.)

> obeys form of model & constraints:
E,(fi(yx)) = d
> G.L.S. needs, in order to work, Vy,x X._, f(y,x) = C

to fulfill, define additional constraint:

fN+I(Y’X) = Cmax - Zi=|..N fi()”x)’ where Cmax = maxx,y Zi=|..N fi(),’x)

> also, approximate (because X _,; concexes 1S NOt (Dever) feasible)

E.(f) = 2, pOooy)fi(nx) = V[T| Zo) 72, oyP(YIX)fi(y:x,)
(use p(y,x)=p(Y|X)p’(x), where p’(x) is empirical i.e. from dataT)

Generalized Iterative Scaling

» |.Initialize Ki(l) (any values, e.g. 0), compute d, i=1..N+1|

» 2.Set iteration number n to |I.

» 3. Compute current model distribution expected values
of all the constraint expectations

E..(f) (based on p®™(y|x,)

o [pass through data, see previous slide;
at each data position t, compute p(y,x,), normalize]

» 4. Update A" =A™ + (1/C) log(d/E,,.,(f))
» 5.Repeat 3.,4. until convergence.

Comments on Features

» Advantage of “variable” (~ not fixed) context in f(y,x):

o any feature o.k. (examples mostly for tagging):
previous word’s part of speech isVBZ orVB orVBRy is DT
next word: capitalized, current: “.", and y is a sentence break (SB detect)
y is MD, and the current sentence is a question (last word: question mark)
tag assigned by a different tagger is VBP, and y is VB
it is before Thanksgiving and y is “turkey” (Language modeling)
even (God forbid!) manually written rules, e.g.y isVBZ and there is ...

> remember, the predicted event plays a role in a feature:
also, a set of events: f(y,x) is true if y is NNS or NN, and x is ...
x can be ignored as well (“unigram” features)

Feature Selection

Advantage:
° throw in many features

typical case: specify templates manually (pool of features P), fill in
from data, possibly add some specific manually written features
let the machine select

Maximum Likelihood ~ Minimum Entropy on training data
after, of course, computing the A.'s using the MaxEnt algorithm

* Naive (greedy of course) algorithm:

o start with empty S, add feature at a time (MLE after ME)

> too costly for full computation (|S| x |P| x |ME-time|)
o Solution: see Berger & DellaPietras

Logistic Regression

e Assumes a parametric form for directly estimating
P(Y | X). For binary concepts, this is:

P(Y =1|X)= :

n

1 +exp(w, + Ei=1 wX,)

PY=0|X)=1-P(Y =1|X)
exp(w0+2j=lwin.)

n

1+ exp(w, + EM wX,)

* Equivalent to a one-layer backpropagation neural net.

— Logistic regression is the source of the sigmoid function
used in backpropagation.

— Objective function for training is somewhat different.

Logistic Regression as a Log-Linear Model

 Logistic regression is basically a linear model, which
is demonstrated by taking logs.

P(Y =0| X)

P(Y =1| X)

1 < exp(w, + E; w,.X,)

AssignlabelY =01ff 1 <

n

O<w, + w. X

5 A

or equivalently w, > Eil -wX,

l

* Also called a maximum entropy model (MaxEnt)
because it can be shown that standard training for

logistic regression gives the distribution with maximum
entropy that is consistent with the training data.

Logistic Regression Training

* Weights are set during training to maximize the
conditional data likelihood :

W < argmaxl_[P(Yd | X W)
w €D

where D is the set of training examples and Y?
and X9 denote, respectively, the values of Y and X
for example d.

* Equivalently viewed as maximizing the
conditional log likelihood (CLL)

W < argmax;lnP(Yd | X W)
w €D

Logistic Regression Training

 Like neural-nets, can use standard gradient
descent to find the parameters (weights)
that optimize the CLL objective function.

* Many other more advanced training methods
are possible to speed convergence.
> Conjugate gradient
o Generalized Iterative Scaling (GIS)
° Improved lterative Scaling (l1S)

o Limited-memory quasi-Newton (L-BFGS)

Preventing Overfitting in Logistic Regression

* To prevent overfitting, one can use
regularization (a.k.a. smoothing) by penalizing
large weights by changing the training objective:

A2
W < argmax > InP(Y? | X, W) - —HWH
/4 =D 2
Where A is a constant that determines the amount of smoothing

* This can be shown to be equivalent to assuming a
Guassian prior for W with zero mean and a
variance related to I/A.

Parameter estimation

Algorithms

* Generalized Iterative Scaling (GIS):
(Darroch and Ratcliff, 1972)

* Improved lterative Scaling (1IS): (Della
Pietra et al., 1995)

GIS: setup

Requirements for running GIS:
e Obey form of model and constraints:
k
24115 (%)
e’ E f =d,
p(x) = Z Pfj J

e An additional constraint;:

VxEe ifj(x) =C

k
Let
C=max) f.(x)
xEe Z /

k
Add a new feature f,_ : VxEe¢ fk+1 (x)=C - Ef] (x)
=

GIS algorithm

* Compute d, =1, ..., k+l

e Initialize jf.l) (any values, e.g., 0)
]

* Repeat until converge

> For each |
Compute Ep(n)fj = E P(n) ()C)f] (X)

k+1 (n)

where E/l f (x)
(n) (x) —

/

Update 20D _ (n) 1 d
; (08—)

()f

Approximation for calculating feature
expectation

E,f, =Y p)f,(x)= Y pla,b)f,(a,b)

acA,

= E;ejg(b)p(a 1) f;(a,b)

~ E261;5(19)10(61 1) f;(a,b)
= 2 p(®)Y palb)f,(a,b)

_ % i}: plalb)f (ab,)

=1 a€A

Properties of GIS

* L) >=L(p")
» The sequence is guaranteed to converge to p™.

* The converge can be very slow.

e The running time of each iteration is O(NPA):
> N: the training set size
° P:the number of classes

> A:the average number of features that are active for a
given event (a, b).

IS algorithm

k
e Compute d,j=I, ..., k+I and FH(x) = Eff(x)

* Repeat until converge

> For each |
Let Aj,j be the solution to

Y@ @e M =d,
x&e

Update
P /l(jn+1) =A(jn) +A/1j

Calculating
k
f Vx€e [(x)=C

Then A/lj=%(log 4,)

Ep<n>fj

GIS is the same as IS

Else

AA . must be calcuated numerically.
J

AA

Feature selection

Feature selection

e Throw in many features and let the
machine select the weights

> Manually specify feature templates

* Problem: too many features

* An alternative: greedy algorithm
° Start with an empty set S
> Add a feature at each iteration

Notation

With the feature set S:

C(S) = {peP!plf)=p(f) forallfeS}
p, = argmax H(p)

pPEC(S)

After adding a feature:

C(SUf) = {peP|p(f)=p(f) forallfeSuf}

= argmaxH(p)
peC(SUf)

P Suf

The gain in the log-likelihood of the training data:

AL(S,f) = Lipg ;) - L(p)

Feature selection algorithm
(Berger et al., 1996)

e Start with S being empty; thus p, is uniform.

* Repeat until the gain is small enough

° For each candidate feature f

Computer the model pSUfusing IN

Calculate the log-likelihood gain

> Choose the feature with maximal gain,and add it to S

=» Problem: too expensive

Approximating gains
(Berger et.al., 1996)

* Instead of recalculating all the weights,
calculate only the weight of the new feature.

Training a MaxEnt Model

Scenario #l:

e Define features templates

e Create the feature set

e Determine the optimum feature weights via GIS or |IS

Scenario #2:
e Define feature templates
e Create candidate feature set S

» At every iteration, choose the feature from S (with max
gain) and determine its weight (or choose top-n
features and their weights).

Case study

POS tagging
(Ratnaparkhi, 1996)

* Notation variation:
> f(a, b): a: class, b: context

> f(h;, t): h:history for i word, t: tag for i*" word

e History:

hz’ = {Wi > Wi—l > Wi—2 > W'+1 > Wi+2 > ti—l > ti—2}

l

 Training data:
> Treat it as a list of (h, t) pairs.

> How many pairs are there?

Using a MaxEnt Model
* Modeling:

* Training:
o Define features templates
> Create the feature set

> Determine the optimum feature weights via
GIS or IIS

* Decoding:

Modeling

P(t,,....t | Wyeesw)

n

- n ,i—1
=Hp(ti ‘Wl 9t1)
=1

~ ﬁp(ti | 7;)
i=1

Training step |:
define feature templates

Condition

Features

w; 1s not rare

w; = X

-

w; 18 rare

X 1s prefix of w;, [X| <4

-

X 1s suffix of v, |[X| < 4

Il

~

w; contains number

w; contains uppercase character

~

w; contains hyphen

-

Y owy

'\'\'\'\‘:\"\'\’\
yn

Coil s oot oo s ool oo s s oo o B

fic1= X § =
fjootiny = XY ;=
Wjw1 =X i =
Wy = X i =
w4 = X f =
Wwips =X i =

|

History h.

—

Tag t.

Step 2: Create feature set

Hord: the =stories| about | well-heeled communities and developers
Tag: DT NNS IN JJ NNS CC NNS
Posttion: | 1 2 3 4 5 6 7

w, = about Nt = 1IN

;.1 = stories Li, =1IN

w;_» = the Lf, = IN

w41 = well-heeled & {, = 1IN

4o = communities A f;, = IN

f,_, = NNS Lf = IN

f;_st;_; = DT NNS i, = IN

]

=>» Collect all the features from the training data
=> Throw away features that appear less than 10 times

Step 3: determine the feature weights

e GIS

 Training time:
o Each iteration: O(NTA):

N: the training set size
T: the number of allowable tags
A:average number of features that are active for a (h, t).

o About 24 hours on an IBM RS/6000 Model 380.

* How many features!

Decoding: Beam search

» Generate tags for w,, find top N, set S);
accordingly,j=1,2,...,N

e For i=2 to n (n is the sentence length)
> For j=1 to N

Generate tags for wi, given s, . as previous tag
context

Append each tag to s), to make a new sequence.

> Find N highest prob sequences generated
above, and set s; accordingly, j=1, ..., N

* Return highest prob sequence s_,.

Beam search

« Beam interence:

« At each position keep the top k complete sequences.
« Extend each sequence in each local way.

« The extensions compete for the £ slots at the next position.
« Advantages:

o Fast; and beam sizes of 3-5 are as good or almost as good
as exact inference in many cases.

o Easy to implement (no dynamic programming required).
« Disadvantage:
o Inexact: the globally best sequence can fall off the beam.

Viterbi search

« Viterbi inference:
« Dynamic programming or memoization.

« Requires small window of state influence (e.g., past two
states are relevant).

 Advantage:
o Exact: the global best sequence is returned.

« Disadvantage:

« Harder to implement long-distance state-state interactions
(but beam inference tends not to allow long-distance
resurrection of sequences anyway).

Decoding (cont)

» Tags for words:
> Known words: use tag dictionary

> Unknown words: try all possible tags

66 . . . ”
e Ex: "time flies like an arrow

e Running time: O(NTAB)
> N:sentence length
> B:beam size
o T:tagset size

> A:average number of features that are active for a given event

Experiment results

MF tag 0O 7.66
Markov 1-gram B 6.74
Markov 3-gram W 3.7
Markov 3-gram B 3.64
Decision tree M 35
Transformation B 3.39
Maxent R 3.37
‘Maxent O 311 %07
Multi-tagger Voting B 2.84 £.03

Comparison with other learners

e HMM: MaxEnt uses more context
* SDT: MaxEnt does not split data

 TBL: MaxEnt is statistical and it provides
probability distributions.

MaxEnt Summary

Concept: choose the p* that maximizes entropy while
satisfying all the constraints.

Max likelihood: p* is also the model within a model
family that maximizes the log-likelihood of the training
data.

Training: GIS or IIS, which can be slow.
MaxEnt handles overlapping features well.

In general, MaxEnt achieves good performances on
many NLP tasks.

Additional slides

Ex4 (cont)

A |a A |a A |a
Empirical
A |a A=2/3 B=2/3 AB=1/3
Lo A | A |a A |a
|0 1/311/6 4/9[2/9 113 [1/3
13 11/6 2/911/9 1/310

7

Multinomial Logistic Regression

* Logistic regression can be generalized to
multi-class problems (where Y has a
multinomial distribution).

* Effectively constructs a linear classifier for
each category.

The Task, Again

e Recall:
° tagging ~ morphological disambiguation
> tagsetV; C (C,,C,,..C)

C. - morphological categories, such as POS, NUMBER,
CASE, PERSON, TENSE, GENDER, ...

> mapping w — {t &V} exists

where A is the language alphabet, L is the set of lemmas

° extension to punctuation, sentence boundaries
(treated as words)

Maximum Entropy Tagging Model

* General
p(y,x) = (1/2) ez 1.nifi(yx)
Task: find A, satisfying the model and constraints
E,(fi(xx) = d,
where
d. = E'(f(y,x)) (empirical expectation i.e. feature frequency)
* Tagging
p(t,x) = (1/Z) g1 nAifi(tx) (Ao might be extra: cf. u in AR(?)
t & Tagset,
x ~ context (words and tags alike; say, up to three positions R/L)

Features for Tagging

e Context definition

> two words back and ahead, two tags back, current word:
Xi = (Wit Wiyt s Wi Wi | Wi)

o features may ask any information from this window
e.g.:
* previous tag is DT
- previous two tags are PRP$ and MD, and the following word is “be

* current word is “an”

- suffix of current word is “ing”

do not forget: feature also contains t, the current tag:

- feature #45: suffix of current word is “ing” & the tag isVBG < f,. = |

Feature Selection

» The PC' way (see also yesterday’s class):

° (try to) test all possible feature combinations

features may overlap, or be redundant; also, general or specific -
impossible to select manually

> greedy selection:

add one feature at a time, test if (good) improvement:
* keep if yes, return to the pool of features if not

° even this is costly, unless some shortcuts are made
see Berger & DPs for details
e The other way:
o use some heuristic to limit the number of features

° IPoIiticaIIy (or, Probabilistically-stochastically) Correct

Limiting the Number of Features

» Always do (regardless whether you're PC or not):

° use contexts which appear in the training data (lossless
selection)

e More or less PC, but entails huge savings (in the
number of features to estimate A, weights for):
o use features appearing only L-times in the data (L ~ 10)
> use w;.-derived features which appear with rare words only
> do not use all combinations of context (this is even “LC'")

° but then, use all of them, and compute the A, only once
using the Generalized Iterative Scaling algorithm

° lLinguisticaIIy Correct

Feature Examples (Context)

* From A. Ratnaparkhi (EMNLP, 1996, UPenn)
o t. =T,w, = X (frequency c > 4):
t. =VBG, w, = selling
> t. =T, w, contains uppercase char (rare):
t. = NNP, tolower(w,) + w.
=L, =N, =X
t =VBPt, = PRP t_ = RB
* Other examples of possible features:

° t;, =T, ¢ is X, where j is the closest left position where
Y

t, =VBZ,t;= NN,Y < t; & {NNP NNS, NN}

Feature Examples (Lexical/Unknown)

* From A. Ratnaparkhi :
o t. = T, suffix(w;)= X (length X < 5):
t. = J), suffix(w,) = eled (traveled, leveled,)
o t. =T, prefix(w,)= X (length X < 5):
t. = JJ, prefix(w,) = well (well-done, well-received.,...)
> t. = T, w;, contains hyphen:
t. =]),’- in w; (open-minded, short-sighted.,...)
e Other possibility, for example:

> t. =T, w, contains X:
t. = NounPl, w. contains umlaut (a,0,uU) (Worter, Lange,...)

“Specialized” Word-based Features

* List of words with most errors (WS,
Penn Treebank):

> about, that, more, up, ...

» Add “specialized”, detailed features:
ct=Tw.=Xt, =Y, t, =2
t. = IN,w. = about,t_, = NNS,t., = DT
> possible only for relatively high-frequency
words
* Slightly better results (also, inconsistent
[test] data)

Maximum Entropy Tagging: Results

* For details, see A Ratnaparkhi

* Base experiment (|33k words, < 3%
unknown):
° 96.31% word accuracy

* Specialized features added:
> 96.49% word accuracy
» Consistent subset (training + test)

> 97.04% word accuracy (97.13% wi/specialized
features)

Discriminative models

Shift-reduce parser Ratnaparkhi (98)

* Learns a distribution P(T|S) of parse trees given sentences
using the sequence of actions of a shift-reduce parser

P(T|S)=||P(qa]a,..a._S)
 Uses a maximum entropy model to learn conditional
distribution of parse action given history

 Suffers from independence assumptions that actions are
independent of future observations as CMM

e Higher parameter estimation cost to learn local maximum
entropy models

* Lower but still good accuracy 86% - 87% labeled precision/
recall

Discriminative Models — Distribution Free

Re-ranking

* Represent sentence-parse tree pairs by a feature vector

F(X,Y)

e Learn a linear ranking model with parameters ¢ using
the boosting loss

Model LP LR
Collins 99 88.3% 88.1%
(Generative)

Collins 00 89.9% 89.6%

(BoostLoss)

139%b error
reduction

Still very close in
accuracy to
generative model
(Charniak 00)

Comparison of Generative-

Discriminative Pairs

Johnson (2001) have compared simple PCFG
trained to maximize L(T,S) and L(T|S)

A Simple PCFG has parameters

={0, =P(4->a,|4), 25 =LV i}
Models:

MLE = arg max E Log(P(T,S,)),0€0

i=l..n

MCLE = argmax ELog(P(T 15.)),0€0

i=l..n

Model |LPrecision |LRecall
MLE 0.815 0.789
MCLE 0.817 0.794

Results:

