Memory Based Statistical
Parsing

COSI | 14 — Computational Linguistics
James Pustejovsky

March 10,2015

Brandeis University

(Head) Lexicalization of PCFGs

[Magerman 1995, Collins 1997; Charniak 1997]

 The head word of a phrase gives a good
representation of the phrase’s structure
and meaning

e Puts the properties of words back into a
P Swalked
/\

NIPSue VP alked

NNPg e Vllmwalked

I
Sue walked Pinto NPstore

. | 7
Iinto DTthe NNstore

I I
the store

(Head) Lexicalization of PCFGs

[Magerman 1995, Collins 1997; Charniak 1997]

» Word-to-word affinities are useful for certain
ambiguities

o PP attachment is now (partly) captured in a local
PCFG rule.

Think about: What useful information isn’t captured?

VP-announce VP-announce

MHHORICE &ms announce NP-rates PP-in
rates }P‘Q rates in January
for January

> Also useful for: coordination scope, verb complement
patterns

Lexicalized parsing was seen as the

parsing breakthrough of the late 1990s

* Eugene Charniak, 2000 JHU workshop: “To do
better, it is necessary to condition probabilities
on the actual words of the sentence. This makes

the probabilities much tighter:

> p(VP — V NP NP) = 0.00151
> p(VP — V NP NP | said) = 0.00001
> p(VP — V NP NP | gave) =0.01980 g

 Michael Collins, 2003 COLT tutorial: “Lexicalized
Probabilistic Context-Free Grammars ... perform
vastly better than PCFGs (88% vs. 73% accuracy)”

Charniak (1997)

* Avery straightforward model of a lexicalized PCFG

e Probabilistic conditioning is “top-down” like a regular
PCFG

o But actual parsing is bottom-up, somewhat like the CKY
algorithm we saw

Srose

/\

NPproﬁ'ts VProse

TN |

JJ corporate NNSproﬁ'ts Vrose

corporate profits rose

Charniak (1997) example

a. h = profits; c = NP

Srose

N b. ph=rose; pc =S5
NP VPose

A A C. P(h ph,C,pC) t\::rzlleeadword
d. P(r|h,c,pc)

Srose Srose
/\ /’\
NPprofits VProse NPproﬁts V-Prose

PA AN N PN
JJ NNSproﬁts

N AN

Lexicalization models argument selection by
sharpening rule expansion probabilities

e The probability of different verbal complement frames
(i.e., “subcategorizations”) depends on the verb:

Local Tree come |take |think | want
VP -V 9.5% 2.6% | 4.6% 5.7%
VP — V NP 1.1% 32.1% | 0.2% 13.9%
VP — V PP 34.5% [3.1% |7.1% 0.3%
VP — V SBAR 6.6% 0.3% |73.0% |0.2%
VP - VS 2.2% 1.3% | 4.8% 70.8%
VP — VNPS 0.1% 5.7% | 0.0% 0.3%
VP — V PRT NP 0.3% 5.8% | 0.0% 0.0%
VP — V PRT PP 6.1% 1.5% | 0.2% 0.0%

“monolexical”’ probabilities

Lexicalization sharpens
probabilities: Predicting heads

“Bilexical probabilities”

» P(prices | n-plural) = .013
» P(prices | n-plural, NP) =.013
» P(prices | n-plural, NP, S) =.025
* P(prices | n-plural, NP, S, v-past) = .052
* P(prices | n-plural, NP, S, v-past, fell) =.146

Charniak (1997) linear
interpolation/shrinkage

p(hlphicapc) = Al(e)PMLE(h“?h,C,pC)
+A2(e)Pue(h|C(ph),c,pc)
+A3(e)Pmie(hlc,pc) + Ag(e)Pmie(hlc)

m Aj(e) is here a function of how much one would expect
to see a certain occurrence, given the amount of training
data, word counts, etc.

m C(ph) is semantic class of parent headword

m Techniques like these for dealing with data sparseness
are vital to successful model construction

Charniak (1997) shrinkage example

P (prft|rose,NP,S) P(corp|prft,]), NP)

P(h|ph,c,pc) 0 0.245
P(h|C(ph),c,pc) 0.00352 0.0150

P(h|c,pc) 0.000627 0.00533

P(h|c) 0.000557 0.00418

m Allows utilization of rich highly conditioned estimates,

but smoothes when sufficient data is unavailable
m One can’t just use MLEs: one commonly sees previously
unseen events, which would have probability O.

Sparseness & the Penn

Treebank

e« The Penn Treebank - T million words of
parsed English WSJ - has been a key
resource (because of the widespread
reliance on supervised learning)

e But 1 million words is like nothing:

> 965,000 constituents, but only 66 WHAD]JP,
of which only 6 aren’t how much or how
many, but there is an infinite space of these

How clever/original/incompetent (at risk assessment and evaluation)

e Most of the probabilities that you would
like to compute, you can’t compute

Sparseness & the Penn
Treebank (2)

» Many parse preferences depend on bilexical
statistics: likelihoods of relationships between
pairs of words (compound nouns, PP
attachments, ...)

» Extremely sparse, even on topics central to
the WSJ:

- stocks plummeted 2 occurrences
> Stocks stabilized 1 occurrence
- Stocks skyrocketed 0 occurrences

> *stocks discussed O occurrences

» There has been only modest success in augmenting the Penn Treebank
with extra unannotated materials or using semantic classes — given a

reasonable amount of annotated training data.
o Cf. Charniak 1997, Charniak 2000

- But McClosky et al. 2006 doing self-training and Koo and Collins2008 semantic
classes are rather more successful!

PCFGs and Independence

» The symbols in a PCFG define independence
assumptions:

S
S — NP VP N NHP
NP VP .
o At any node, the material inside that node is

independent of the material outside that node,
given the label of that node

> Any information that statistically connects
behavior inside and outside a node must flow
through that node’s label

NP — DT NN

Non-Independence |

* The independence assumptions of a PCFG are often
too strong

All NPs NPs under S NPs under VP

21% 23%
(1]

11%
° 9% 9%

l. 6%

NPPP DTNN PRP NPPP DTNN PRP NP PP DTNN PRP

4%

*» Example: the ex1pansion of an NP is highly dependent
on the parent of the NP (i.e., subjects vs. objects)

Non-Independence |l

» Symptoms of overly strong assumptions:

POS new ad
> Rewrites get used where they don’t belong . L

Fidelity s

NP

/N

NNP NNP Jf NN N NN

Big Board composite trading NNP NNP composite trading

N

B 4 Boa rd

N

Refining the Grammar Symbols

* We can relax independence assumptions by encoding dependencies into
the PCFG symbols, by state splitting:

Parent annotation Marking
[Johnson 98] possessive NPs
SROOT NP
/\
NP'S VP'S . NP-POS J] NN
| PN | N
PRP VBD ADVP'VP . NNP POS new ad
AN 1
He was right Fidelity s

e Too much state-splitting =2 sparseness (no smoothing used!)

e What are the most useful features to encode?

Annotations

» Annotations split the grammar categories
into sub-categories.

» Conditioning on history vs. annotating
> P(NPAS — PRP) is a lot like P(NP — PRP | S)
> P(NP-POS — NNP PQOS) isn’t history conditioning.

» Feature grammars vs. annotation
- Can think of a symbol like NPANP-POS as
NP [parent:NP, +POS]

» After parsing with an annotated grammar,
the annotations are then stripped for
evaluation.

Accurate Unlexicalized Parsing
[Klein and Manning 1993]

» What do we mean by an “unlexicalized” PCFG?
o Grammar rules are not systematically specified down to

the level of lexical items

NP-stocks is not allowed
NPAS-CC is fine

> Closed vs. open class words

Long tradition in linguistics of using function words as features or markers for
selection (VB-have, SBAR-if/whether)

Different to the bilexical idea of semantic heads

Open-class selection is really a proxy for semantics

» Thesis
> Most of what you need for accurate parsing, and much
of what lexicalized PCFGs actually capture isn’t lexical
selection between content words but just basic
grammatical features, like verb form, finiteness,
presence of a verbal auxiliary, etc.

Experimental Approach

e Corpus: Penn Treebank, WSJ; iterate on small dev

~ I

Training: sections 02-21

Test: section 23

* Size — number of symbols in grammar.
> Passive / complete symbols: NP, NPAS
> Active / incomplete symbols: @NP_NP_CC (from binarization
* We state-split as sparingly as possible
> Highest accuracy with fewest symbols
o Error-driven, manual hill-climb, one annotation at a time

Horizontal Markovization

« Horizontal Markovization: Merges States

NP NP
NP /\ /\
T~ NNP NP—NNPe
NNP NP-... NNP

NNP NNP NNP T />\.

NNP NP—>N1\|TP NNPe NNP NP-;... NNPe

NNP NNP

749, 12000

73% 9000

72% 6000
71% I 3000 I I
70% - \ \ \ — o N .

0 1 2v 2 inf 0

Symbols

I I I I

1 2v 2 inf

Horizontal Markov Order Horizontal Markov Order

Vertical Markovization

e Vertical Markov

order: rewrites
depend on past k
ancestor nodes.

(i.e., parent
annotation)

79%

78%
77%

76% -
75% -
74% -
73% -

72% 0 T T 71T 1 1

1

v 2 3v 3
Vertical Markov Order

Order 1 Order 2
STROOT
) NP'S
PRP VBD ADJP . PRP VBD ADVP'VP .
He was right He was right
25000
20000
L)
_8 15000
‘% 10000 -
5000
0741—1—1—1—\
1 2v 2 3v 3 -
Vertical Markov Order MOdEl Fl SIZQ
v=h=2v | 77.8 | 7.5K

Unary Splits

ROOT
e Problem: unary 51
rewrites are used S
to transmute NlP /VP\ .
categories so a NN VED Sp
high-probability | | T~
rule can be used. Revenue was NP , PP
QP , VBG NP

m Solution: Mark $444.9 million including net interest

unary rewrite sites) :
Y Annotation F1 Size

with -U Base 77.8 |7.5K

UNARY /8.3 |8.0K

Tag Splits

* Problem: Treebank tags
are too coarse.

* Example: SBAR sentential
complementizers (that,
whether, if), subordinating
conjunctions (while, after),
and true prepositions (in,
of, to) are all tagged IN.

e Partial Solution:
> Subdivide the IN tag.

VP

N

TO VP

| /\

to VB SBAR

I /\

see. IN"SNT S

I N

if NP VP

NN VBZ

ndvertising works

Annotation F1 Size

Previous /8.3 | 8.0K

SPLIT-IN 80.3 |8.1K

Yield Splits

* Problem: sometimes the
behavior of a category
depends on something
inside its future yield.

¢ Examples:
o Possessive NPs
> Finite vs. infinite VPs
o Lexical heads!

e Solution: annotate future
elements into nodes.

ROOT

/£ r

* NP VP-VBE

[I N

* DT VBZ

This is

NP

N\

NN NN

parnic buymg

! 144

Annotation |F1 Size
tag splits 82.3 |9.7K
POSS-NP 83.1 |9.8K
SPLIT-VP 85.7 [10.5K

Distance / Recursion Splits

e Problem: vanilla PCFGs NP -v

cannot distinguish
attachment heights.
/ NP
 Solution: mark a

property of higher or

lower sites: Annotation F1 Size

o Contains a Verb. Previous 85.7 10.5K

° |s (non)-recursive. BASE-NP 86.0 |11.7K
Base NPs [cf. Collins 99] DOMINATES-V 86.9 |14.1K
Right-recursive NPs RIGHT-REC-NP 87.0 |15.2K

A Fully Annotated Tree

ROOT
S"ROOT-v
“§ NP'S-B VP'S-VBE-v
“ DT-U'NP VBZBE'VP NP*VP-B
This 1S NN'NP NN'NP

panic ~ buying

Final Test Set Results

Parser LP LR Fl

Magerman 95 84.9 84.6 |84.7
Collins 96 86.3 858 |86.0
Klein & Manning 03 | 86.9 85.7 |86.3
Charniak 97 87.4 87.5 87.4
Collins 99 88.7 88.6 |88.6

» Beats “first generation” lexicalized parsers

1 Learning Latent Annotations
[Petrov and Klein 2006, 2007]

/
!,\\ .
| NG|

™

Qan you automatically find good symbols? OUtSide

= Brackets are known / \
= Base categories are known

- = Induce subcategories
- = Clever split/merge category refinement

S[X1]
B
NP[X5] VP[X4] [X7]
| i /4\ |7 ‘
PRP[X3] VBD[X5] ADJP[Xg] .
| | —
He was right

EEM algorithm, like Forward-Backward for
'HMMs, but constrained by tree

Inside

POS tag splits’ commonest words:
effectively a semantic class-based model

= Proper Nouns (NNP):
NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters
NNP-15 New San Wwall
NNP-3 York Francisco Street

= Personal pronouns (PRP):

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

1S7

100d
X
dravHm
odd
0yvds

rLNI
dAAQVHM

don
OVN

Ovd4d
dfNOD

0Ss
ddHM
ldd

ANIS
XN
Nydd
dNHM

do

dvds

drav

dAav

Number of phrasal subcategories

dN

The Latest Parsing Results... s

WSJ train 2-21, test 23)

F1 F1
Parser < 40 words all words
Klein & Manning unlexicalized
5003 86.3 85.7
Matsuzaki et al. simple EM latent
states 2005 86.7 86.1
Charniak generative, lexicalized
(11 o . ?” -1 .
("maxent inspired) 2000 90 89.5
Petrov and Klein NAACL 2007 90.6 90.1
Charniak & Johnson discriminative
reranker 2005 92.0 I1.4
Fossum & Knight 2009 924
combining constituent parsers '

Dependency Grammar and
Dependency Structure

Dependency syntax postulates that syntactic
structure consists of lexical items linked by binary

asymmetric relations (“arrows”) called dependencies
submitted

nsubj@/ lauxpa:N’Zep
The arrows are Bills were by
commonly typed prep lpobj
with the name of on Brownback
grammatical pobj| HV Yl‘ppos
relations (subject, ports Senator Republi
prepositional C/\oru p%)pu e
object, apposition, and immigration of
etc.) pobj

Kansas

Dependency Grammar and
Dependency Structure

Dependency syntax postulates that syntactic
structure consists of lexical items linked by binary
asymmetric relations (“arrows”) called dependencies

The arrow connects a
nead (governor,
superior, regent) with a
dependent (modifier,
inferior, subordinate)

Usually, dependencies
form a tree (connected,
acyclic, single-head)

submitted
nsu bj@/ lauxpaN’Zep
Bills were by
prep| |pob
on Brownback
pobj | n/ \gppos
ports Senator Republican
ﬁ//’\\\pn/ prep
and immigration of

pobj
Kansas

Relation between phrase structure
and dependency structure

A dependency grammar has a notion of a head. Officially, CFGs don’t.
But modern linguistic theory and all modern statistical parsers (Charniak,
Collins, Stanford, ...) do, via hand-written phrasal “head rules”:

> The head of a Noun Phrase is a noun/number/adj/...

> The head of a Verb Phrase is a verb/modal/....

The head rules can be used to extract a dependency parse from a CFG parse

S
The closure of dependencies walked

give constituency from a NPg, e VPyalked
dependency tree

But the dependents of a word NII\IP5ue V?Dwa’ked/PPm{

must be at the same level Sue walked Pinto NPstore
(i.e., “flat”) — there can be no | P

VP! into DT¢pe NNstore

I I
the store

Methods of Dependency Parsing

1.

Dynamic programming (like in the CKY algorithm)
You can do it similarly to lexicalized PCFG parsing: an O(n>) algorithm

Eisner (1996) gives a clever algorithm that reduces the complexity to
O(n3), by producing parse items with heads at the ends rather than in
the middle

Graph algorithms
You create a Maximum Spanning Tree for a sentence

McDonald et al.’s (2005) MSTParser scores dependencies
independently using a ML classifier (he uses MIRA, for online learning,
but it could be MaxEnt)

Constraint Satisfaction

Edges are eliminated that don’t satisfy hard constraints. Karlsson
(1990), etc.

“Deterministic parsing”
Greedy choice of attachments guided by machine learning classifiers
MaltParser (Nivre et al. 2008) — discussed in the next segment

Dependency Conditioning
Preferences

What are the sources of information for dependency
parsing?
1. Bilexical affinities [issues = the] is plausible
2. Dependency distance mostly with nearby words
3. Intervening material
Dependencies rarely span intervening verbs or punctuation
4. Valency of heads
How many dependents on which side are usual for a head?

ROOTDiscyssioprof the outstangding,issdeswas
completed .

MaltParser

* A simple form of greedy discriminative dependency
parser

* The parser does a sequence of bottom up actions

> Roughly like “shift” or “reduce” in a shift-reduce parser,
but the “reduce” actions are specialized to create
dependencies with head on left or right

e The parser has:
o a stack o, written with top to the right
which starts with the ROOT symbol

> a buffer B, written with top to the left
which starts with the input sentence

> a set of dependency arcs A
which starts off empty

o a set of actions

Basic transition-based dependency

parser
Start: 0 =[ROOT],B=w,, .., w,,A=9
1.Shift o, w:|B,A=>c|w,B, A

2.Left-Arc, o|w, w;|B, A=> o, w;|B,
AU{r(w,w,)}
3.Right-Arc, o|w, w;|B, A=> o, w,|B,

AU{r(w,w)}
Finish: =9
Notes:

*Unlike the regular presentation of the CFG
reduce step, dependencies combine one thing
from each of stack and buffer

Actions (“arc-eager” dependency

parser)

Start: 0=[ROOT],B=wy, .., w, , A=9

Lleft-Arc, o|w, w;|B, A=> o, w;|B, AU{r(w,w,)}
Precondition: r’ (w,, w)) € A, w; 2 ROOT

2.Right-Arc, o|w, w;|B, A=> o|w,|w, B, AU{r(w,w))}

3.Reduce olw,B,A=>0,B, A
Precondition: r’ (w,, w,) € A

4.Shift o, w:|B,A=>co|w, B, A

Finish: =9

This is the common “arc-eager” variant: a head can
immediately take a right dependent, before its
dependents are found

1. Left-Arc, o|w, w;|B, A= o, w;|B, AU{r(w;,w,)}
Precondition: (w,, r’, w)) € A, w; # ROOT

Exa m p I e 2. Right-Arc, o|w, w;|B, A= o|w,|w, B, AU{r(w,w))}
3. Reduce olw,B,A=>0,B A
Precondition: (w,, r’, w,) € A
4. Shift o,w]|B, A ac|w,B A

Happy children like to play with their friends .

[ROOT] [Happy, children, ...] %)
Shift [ROOT, Happy] [children, like, ...] %)
LA,.,, [ROOT] [children, like, ...] {amod(children, happy)} = A,
Shift [ROOT, children] [like, to, ...] A,
LA 55 [ROOT] [like, to, ...] A, U {nsubij(like, children)} = A,
RA,,,, [ROOT, like] [to, play, ...] A, U{root(ROOT, like) = A,
Shift [ROOT, like, to] [play, with, ...] A,
LA,,, [ROOT, like] [play, with, ...] A; U {aux(play, to) = A,
RA,.omp [ROOT, like, play] [with their, ...] A, U {xcomp(like, play) = Ac

1. Left-Arc, o|w, w;|B, A= o, w;|B, AU{r(w;,w,)}
Precondition: (w,, r’, w;) € A, w; # ROOT
Right-Arc, o|w;, w;|B, A= o|w;|w, B, AU{r(w,w))}
Reduce olw,B,A=>0,B A
Precondition: (w,, r’, w,) € A
4. Shift o, w,|B,A=>c|w,B, A

)

Example

&

Happy children like to play with their friends .

RA, comp [ROOT, like, play] [with their, ...] A,U{xcomp(like, play) = A,
RA,., [ROOT, like, play, with] [their, friends, ...] A; U {prep(play, with) = Ag
Shift [ROOT, like, play, with, their] [friends, .] Ag

LA s [ROOT, like, play, with] [friends, .] A, U {poss(friends, their) = A,
RA,., [ROQT, like, play, with, friends] [.] A, U {pobj(with, friends) = Ag
Reduce [ROOT, like, play, with] [.] Ag

Reduce [ROOT, like, play] [.] Ag

Reduce [ROOT, like] [.] Ag

RA unc [ROOT, like, .] (] Ag U {punc(like, .) = Aq

You terminate as soon as the buffer is empty. Dependencies = A

MaltParser

* We have left to explain how we choose the next action

e Each action is predicted by a discriminative classifier (often
SVM, could be maxent classifier) over each legal move

o Max of 4 untyped choices, max of |R| x 2 + 2 when typed

o Features: top of stack word, POS; first in buffer word, POS,; etc.
e There is NO search (in the simplest and usual form)

o But you could do some kind of beam search if you wish

* The model’s accuracy is slightly below the best LPCFGs
(evaluated on dependencies), but

» |t provides close to state of the art parsing performance
* It provides VERY fast linear time parsing

%‘T Shml eo le UAS =

Evaluation of Dependency Parsing:
(labeled) dependency accuracy

0 1 2 3
Gold
1 2 She nsubj
2 0 saw root
3 5 the det
4 5 video nn
S5 2 lecture dobj

Acc = # correct deps

of deps
=4/5 = 80%
4 LAS = 2/5 = 40%
Parsed
1 2 She nsubj
2 0 saw root
3 4 the det
4 5 video nsubj
5 2 lecture ccomp

Representative performance

numbers

*» The CoNLL-X (2006) shared task provides
evaluation numbers for various
dependency parsing approaches over 13
languages
o MIALT: LAS scores from 65-92%, depending

Parser UAS%

Sagae and Lavie (2006) ensemble of dependency parsers 92.7
Charniak (2000) generative, constituency 92.2
Collins (1999) generative, constituency 91.7
McDonald and Pereira (2005) — MST graph-based dependency 91.5
Yamada and Matsumoto (2003) — transition-based dependency 90.4

Projectivity

» Dependencies from a CFG tree using heads, must be projective

> There must not be any crossing dependency arcs when the words are laid
out in their linear order, with all arcs above the words.

* But dependency theory normally does allow non-projective structures

to account for displaced constituents
> You can’t easily get the semantics of certain constructions right without
these nonprojective dependencies

/NN

Who did Bill buy the coffee from yesterday ?

Handling non-projectivity

» The arc-eager algorithm we presented only builds
projective dependency trees

e Possible directions to head:

1. Just declare defeat on nonprojective arcs

2. Use a dependency formalism which only admits

projective representations (a CFG doesn’t represent
such structures...)

3. Use a postprocessor to a projective dependency parsing
algorithm to identify and resolve nonprojective links

4. Add extra types of transitions that can model at least
most non-projective structures

5. Move to a parsing mechanism that does not use or
require any constraints on projectivity (e.g., the graph-
based MSTParser)

Dependency paths identify

relations like protein interaction
[Erkan et al. EMNLP 07, Fundel et al. 2007]

kﬁgfgpnstrated
nsupj me
results compl _interacts - prep_with
det / \
that b advmod SasA
nsupj conj_and conj_and
The . : g /\‘ ’
KaiC rythmically xaia KaiB

KaiC €nsubj interacts prep_with=>» SasA
KaiC € nsubj interacts prep_with=>» SasA conj _and=> KaiA
KaiC €nsubj interacts prep_with=>» SasA conj_and=> KaiB

Stanford Dependencies

e The basic dependency representation is projective

|t can be generated by postprocessing headed phrase structure
parses (Penn Treebank syntax)

* It can also be generated directly by
dependency parsers, such as MaltParser; or the

jumped

Easy-First Parsernsuy; prep
bo‘y/\C)\;er

demmod lpobj

the 1little the
l det

fence

Graph modification to facilitate semantic analysis

Bell, based in LA, makes and distributes

electronic and computer products.

conj

makes » distributes
nfﬁi//////c% \\\\\QQEL
Bell and products
partmod lamod
based electronic

prep ig/”\{gni

tn and computer

pobjl
LA

Graph modification to facilitate semantic analysis

Bell, based in LA, makes and distributes

electronic and computer products.

nsubj

6“”’]'0”4 distributes

Bell products
partmod amod
v amod
based electronlc
coniand
prep_in computer

LA

50
45
40
35
30
25
20

15 -
10 -

BioNLP 2009/2011 relation

extraction shared tasks
[Bjorne et al. 2009]

W Dependency distance

w Linear distance

