Introduction to N-gram Models

COSI | 14 — Computational Linguistics
James Pustejovsky

January 23,2015

Brandeis University

Outline

* Human Word « Maximum Likelihood
Presentation Estimation(MLE)

» Language Model » Sparse Data

o N-gram Problem

o N-gram Language o Smoothing and
Model Backoff

e Markov chain o Zipf's Law

» Training and Testing ¢ Evaluation

« Example » Application

» Reduce Number of

Parameters in N-
gram

Language model

* Predicting the next word

 Evaluating how ‘English’ a sequence of
words is

Next Word Presentation
e From The Boston Globe 1/19/15

> A mother ...

- A mother was

> A mother was found

> A mother was found dead ...

> A mother was found dead and her

> A mother was found dead and her son was
shot and ...

- A mother was found dead and her son was
shot and killed by police early Monday.

Human Word Prediction

» We may have ability to predict future
words In an utterance

 How?
- Domain Knowledge

- Syntactic knowledge

- Lexical knowledge
baked

// — 4 \\\
N\ A\
/) ‘
NNy ey - |

aaa ol a

Predictive keyboard

imessage
Today 9:41 AM

What do you think about
having dinner out at Point
Reyes tomorrow?

To: Eric Thirteen

Cc/Bcec:

Subject: Enroliment for fall

Dear Eric,
I'm not sure if Oliver will Attached, please find the transcripts

I®1 eat oysters, but he will| send || and essay youl

= e

QIWIEIRITIY UL JOJPJIQIWIEIR|T]Y U

AISIDIFIGIH]JK]L AlSIDIFIGIH}JK]L

Grammar checker

e The difference is that we don’t eat beef.
The difference are that we don’t eat beef.

e The difference is that we don’t eat beef.
The difference is is that we don’t eat beef.

e | wish | was there.
| wish | were there.

Statistical Machine Translation

e Make the translation sound fluent
* Which one sounds the best?

> he introduced reporters to the main contents
of the statement

> he briefed to reporters the main contents of
the statement

° he briefed reporters on the main contents of
the statement

Applications

» LM usually does not stand alone.

- spelling correction
Detect the error (low probability)
Correct the error by increasing probability

> speech recognition

providing context

- along with Starbucks lovers
- a long list of ex loves

Language Model

» Language Model (LM)

- A language model is a probability
distribution over entire sentences or texts

N-gram: unigrams, bigrams, trigrams,...

 In a simple n-gram language model,
the probability of a word, conditioned
on some number of previous words

N-grams

* In other words, using the previous N-1
words In a sequence we want to
predict the next word

- Sue swallowed a large green
A. frog
B. mountain
C. car
D. pill

What is an N-gram?

= An n-gram is a subsequence of n items
from a given
= Unigram: n-gram of size |
= Bigram: n-gram of size 2
* Trigram: n-gram of size 3

= |tem:
Phonemes
Syllables
Letters

Words
Anything else depending on the application.

Example

input=the dog smelled like a skunk
= bos and eos
e Bigram:
- # the, the dog, dog smelled, smelled like,
like a, a skunk, skunk#

e Trigram:
- "# the dog", "the dog smelled", "dog

smelled like", "smelled like a", "like a
skunk" and "a skunk #".

How to predict the next word?

 Assume a language has T word types in its
lexicon, how likely is word x to follow word y?

o Solutions:

- Estimate likelihood of x occurring in new text,
based on its general frequency of occurrence
estimated from a corpus

is more likely to occur than

- Condition the likelihood of x occurring in the
context of previous words (bigrams, trigrams,...)
is more likely than

Estimate PDF

* With large enough dataset
P(X=x, S=s) can be estimated with
C(X=x, S=s) in the dataset
size of dataset
e P(X=x|S=s) can be estimated with
C(X=x, S=s) in the dataset
C(S=s) in the dataset
* More examples in lab next week

Predicting the next word from
corpora

* P(love| but he will) =
C(but he will love) / C (he will love)

What do you think about
having dinner out at Point
Reyes tomorrow?

I'm not sure if Oliver will
K81 eat oysters, but he will| Send

QIWIEIR]TIYIULI JO}P

Statistical View

» The task of predicting the next word can
be stated as:

- attempting to estimate the probability
distribution function P:

P (\Vn | ‘Vl ‘Vn_l)

e |[n other words:

- we use a classification of the previous history
words (or context), to predict the next word.

- On the basis of having looked at a lot of text,
we know which words tend to follow other
words.

How to assign probabilities to a
sequence of words

e Statistical Machine Learning

> We use language model to give probabilities
to the translation outputs.
> High probability = better translation

e P(*he briefed reporters on the main contents of the statement”) =
C(“he briefed reporters on the main contents of the statement”)
C(all possible sequence of words)

e To solve this, we use Chain Rule +
Markov Assumption

N-Gram Models

» Models Sequences using the
Statistical Properties of N-Grams

e |[dea: Shannon

o given a sequence of letters, what is the
likelihood of the next letter?

> From training data, derive a probability
distribution for the next letter given a
history of size n.

N-gram Model is a Markov Chain

- Give a set of states, S ={s1, sz, ..., Si}.

- The process starts in a random state based on a
probability distribution

» Change states in sequence based on a probability
distribution of the next state given the previous state

» This model could generate the sequence {A,C.D.B.C}
of length 5 with probability: 0.8.0.6-1.0.0.9.1.0 = 0.432

Markov Assumption

» Markov assumption: the probability of the next
word depends only on the previous k words.

P(w, Wy ... W.y) = P(W_ W Wirq oo Wiig)

N\

(k+1)-gram or Kt order Markov approximation

e« Common N-grams:

Unigram: P(w; w, ... w,,) = P(w,) P(w,) ... P(w,)
Bigram: P(w, W, ... W,)) = P(w,) P(w,|w,) ... P(W,|w,_)
Trigram: P(Wy W, ... W,,) = P(W,) P(W5|W,) ... P(W,|W,.0 W,q)

Using N-Grams

* For N-gram models
o P(wWy,Wy, ...,W,)

> By the we can decompose a joint
probability, e.g. P(w,,w,,w;) as follows:

P(w,W,, ...,W,) = P(W,|W,,Ws,...,w,) P(W,|w,, ...,w,) ...
P(Wn-1|Wn) P(Wn)

P(W{’)“Ijlp(wdwi“l)

Example

o Compute the product of component
conditional probabilities?
* P) = P(the) *
P | the) * P(|

» How to calculate these probability?

Training and Testing

» N-Gram probabilities come from a

> overly narrow corpus: probabilities don't
generalize

- overly general corpus: probabilities don't
reflect task or domain

» A separate IS used to
the model

A Simple Bigram Example

o Estimate the likelihood of the sentence:

) = P(l | <start>)

P(want | 1) P(io | wan) P(eat] ©) P(|
) P(00r |) P(<end>| 00

o What do we need to calculate these
likelihoods?

> Bigram probabilities for each word pair
sequence in the sentence

> Calculated from a large corpus

Early Bigram Probabilities from
BERP

Eat on 16 Eat Thai 03
Eat some 06 Eat breakfast |.03
Eat lunch 06 Eat in 02
Eat dinner 05 Eat Chinese |.02
Eat at 04 Eat Mexican |.02
Eata .04 Eat tomorrow |.01
Eat Indian 04 Eat dessert 007
Eat today 03 Eat British 001

The Berkeley Restaurant Project (BeRP) is a testbed for a speech recognition systems developed by the
in Berkeley, CA

<start> I 25 Want some 04
<start>1d 06 Want Thai 01
<start> Tell 04 To eat 26
<start>I'm 02 To have 14
I want 32 To spend .09
I would 29 To be 02
Idon’t 08 British food .60
I have 04 British restaurant 15
Want to .65 British cuisine 01
Want a 05 British lunch 01

. P) =
P(l | <start>) P(want | |) P(to | want) P(eat |
to)
P(British | eat) P(food | British) =
.25%.32%.65*.26%.001*.60 = .
000080

» N-gram models can be trained by
and

Calculating N-gram Probabilities

» Given a certain number of pieces of training
data, the second goal is then finding out :

> how to derive a good probability estimate for the
target feature based on these data.

e For our running example of n-grams, we will
be interested in P(wy - --wy) and the
prediction task P(wn|wy -+ -wn_1), since:

P(wy - -wy)

}) (\an“"’] °® o \\"'n_l) — , .
| | }) ('\Vl e \\"’n_l)

Maximum Likelihood Estimation

» Given:
o C(wWw,...w,): the frequency of w,w,...w,
In the training text
> N: the total number of training n-grams:

Pue(WiWs...pn) = C(WyW,..W,)/N

Prte(Wn | WiWs.. Wi y) = C(W1W2---Wn)/C(W1W2---Wn-1)‘

Early BERP Bigram Counts

I Want To Eat Chinese Food lunch
I 8 1087 0 13 0 0 0
Want 3 0 786 0 6 8 6
To 3 0 |10 860 3 0 12
Eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 I
Food 19 0 |7 0 0 0 0
Lunch 4 0 0 0 0 I 0

Early BERP Bigram Probabilities

» Normalization: divide each row's counts
by appropriate unigram counts for w,,_,

I Want |To Eat |Chinese |Food |Lunch

3437 1215 [3256 |938 |213 1506 | 459

7

» Computing the bigram probability of *
> C(L1)/C(all I
> p (I]I) = 8 /3437 = .0023

Calculating N-gram Probabilities

» Given a certain number of pieces of training
data, the second goal is then finding out :

> how to derive a good probability estimate for the
target feature based on these data.

e For our running example of n-grams, we will
be interested in P(wy - --wy) and the
prediction task P(wn|wy -+ -wn_1), since:

P(wy - -wy)

}) (\an“"’] °® o \\"'n_l) — , .
| | }) ('\Vl e \\"’n_l)

Maximum Likelihood Estimation

» Given:
o C(wWw,...w,): the frequency of w,w,...w,
In the training text
> N: the total number of training n-grams:

Pue(WiWs...pn) = C(WyW,..W,)/N

Prte(Wn | WiWs.. Wi y) = C(W1W2---Wn)/C(W1W2---Wn-1)‘

N-gram Parameters
* Is a high-order n-gram needed?

P(

e |SSUES:

> The longer the sequence, the less likely
we are to find it in a training corpus

- The larger the n, the more the number of
parameters to estimate

Computing Number of

Parameters

» Assume that a speaker is staying within a
vocabulary of 20,000 words ,we want to see
the estimates for numbers of parameters

Model Parameters
I st order (bigram model): 20,000 x 19,999 =400 million
2nd order (trigram model): 20,0002 x 19,999 = 8 trillion

3th order (four-gram model): 20,0003 x 19,999 = 1.6 x 107

Table 6.1 Growth in number of parameters for n-gram models.

» For this reason, n-gram systems currently
use bigrams or trigrams (and often make do
with a smaller vocabulary).

How to Reduce the Number of
Parameters?

» Reducing the number of parameters:
> Stemming
- Semantic classes

* In practice, it is hard to beat a trigram
model for language modeling.

Calculating N-gram Probabilities

» Given a certain number of pieces of training
data, the second goal is then finding out :

> how to derive a good probability estimate for the
target feature based on these data.

e For our running example of n-grams, we will
be interested in P(wy - --wy) and the
prediction task P(wn|wy -+ -wn_1), since:

P(wy - -wy)

}) (\an“"’] °® o \\"'n_l) — , .
| | }) ('\Vl e \\"’n_l)

Maximum Likelihood Estimation

» Given:
o C(wWw,...w,): the frequency of w,w,...w,
In the training text
> N: the total number of training n-grams:

Pue(WiWs...pn) = C(WyW,..W,)/N

Prte(Wn | WiWs.. Wi y) = C(W1W2---Wn)/C(W1W2---Wn-1)‘

Even trigram can be too rare

» What's the count of C("Robin kissed Hulk”)?

* It is conceivable but probably shows up in
the corpus.

Sparse Data Problem

» MLE is in general unsuitable for statistical
inference in NLP because small parameters are
hard to estimate.

» The problem is the sparseness of our data (even
with the large corpus).
- The vast majority of words are very uncommon
> longer n-grams involving them are thus much rarer

 The MLE assigns a zero probability to unseen
events
- Bad ...because the probability of the whole
sequences will be zero
computed by multiplying the probabilities of subparts

Solution

« how do you handle unseen n-grams!?
= Smoothing

= Backoff

* Interpolation

Smoothing

= With MLE, a missing k-gram means zero
probability and any longer n-gram that contains
the k-gram will also have a zero probability.

= Words follow a Zipfian distribution

" no matter how big is a training set, there will always
be a lot of rare events that may not be covered.

= Discounting/smoothing techniques:

" allocate some probability mass for the missing n-
grams

Zipf's Law

» Given the frequency f of a word and
its rank r in the list of words ordered:

fecl/r or fxr=Kkfora constantk

900000 «o b A reasonable
A small 8000.00 4 - number of
number of 7000.00 + medium-freq
\
common \3% words
words € 5000.00 +3=<g5---
& 4000.00 -
g
< 3000.00 -
2000.00 -
1000.00 - A large
- ' : . . . ™. number of
0 10 20 30 40 50 60 rare words
rank

Laplace Smoothing

» Add 1 to all frequency counts. (not MLE
anymore)

e Let V be the vocabulary size

14c(w;
PLap(wi) — Vv (N)
» Bigram:
l4c(w;—1,w;
PLap(wi‘wi—l) — —|\;—|EC(’LU7:—1))
* N-gram:

1+c(wy,...,wy)

PLap(wn‘wl,...,wn—l) — V+c(wy,..., Wp—1)

Unigram Smoothing Example

» Tiny Corpus, V=4; N=20 P(w)= <+
Word True Ct | Unigram | New Ct | Adjusted
Prob Prob
cat 10) 11 46
British 4 2 5 21
food 6 3 7 29
0 .0 1 .04
20 1.0 ~20 1.0

Problem with Laplace Smoothing

= Problem: give too much probability mass to
unseen n-grams.

= For sparse sets of data over large vocabularies,
such as n-grams, Laplace's law actually gives far
too much of the probability space to unseen
events.

= Can we smooth more usefully?

Lidstone’s Law: Add-A Smoothing

5—|— 79 Ve —
P(w;|w;_1) = 5*5(;0(:(57;—3

» Need to choose 0

e It works better than add-one, but still works
horribly

Other estimators

» Given N-gram hierarchy
° Pa(wslwy,wy), Py(wslwy), Py(ws)

e Combine these lower-order models
> Interpolation

» Back off to a lower-order model
> backoff

Backoff Estimator

» Backoff is an alternative to smoothing for
e.g. trigrams

> try to fill any gap in n-grams at level n by
looking 'back’ to level n-1
o Example:

o If a particular trigram "Robin kissed Hulk" has
zero frequency

- Maybe the bigram "kissed Hulk" has a non-
zero count
» At worst, we back off all the way to
unigrams and we do smoothing, if we are
still losing

Last time

* What’s the purpose of language modeling?
* Why do we like 5-gram model?

* What’s the solution to the sparsity
problem!?

This time

 Backoff

* Interpolation
* Kneser-Ney = Discounting + Interpolating

Stupid Backoff

e Given a trigram xyz
 Backoff and downweight

(count(zyz)

S(» z, — count(xy)
(=l y) (AS(zly) otherwise

if count(zyz) > 0

* What'’s the problem with this approach!?

Google NGrams

All Our N-gram are Belong to You
By Peter Norvig - 8/03/2006 11:26:00 AM

Posted by Alex Franz and Thorsten Brants, Google Machine Translation
Team

Here at Google Research we have been using word n-gram models for a
variety of R&D projects, such as statistical machine translation, speech
recognition, spelling correction, entity detection, information extraction,
and others. While such models have usually been estimated from training

File sizes: approx. 24 GB compressed (gzip'ed) text f£iles

Nunber of tokens: 1,024,908,267,229
Number of sentences: 95,119,665,584
Number of unigrams: 13,588,391
Nunber of bigrams: 314,843,401
Nunber of trigrams: 977,069,902
Number of fourgrams: 1,313,8158,354
Number of fivegrams: 1,176,470,663

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-
you.html

Katz Backoff

* Unlike Stupid Backoff, Katz Backoff figures
out the normalization factor (alpha).

b Por(z|x,y), if C(x,y,z) >0
Prasz(zl2,y) = { a(z,y)Prat-(2|y), otherwise

N Par(z|y), if C(y,z) >0
Prar=(2ly) = { a(y)Par(2), otherwise

Interpolation

e Consult all models at once but trust the
higher order model more.

p(Wn|Wn—2Wn—1) —)LlP(Wn|Wn_2Wn—1)
+ A P(Wy|wp—1)
——AgP(Wn)

e Ensure valid PDF with the normalization
factor M+ A+ A3=1

Kneser-Ney smoothing

o Still state-of-the-art n-gram LM
e It starts with Absolute Discounting

Bigram count in Bigram count in
training set heldout set

0.0000270

0.448 P AbsoluteDiscounting (Wi |wi—1) — C(v:;_l‘,/‘}l) <
1.25)
2.24 + A (wi—1)P(w;)
3.23

4.21

5.23

6.21

7.21

8.26

O 00O\ DN B W= O

Intuition of KN smoothing

* Lower order model is important only
when higher order model is sparse.

* A should be optimized to perform in such
situations

KN Smoothing example

| can’t see without my reading

e San Francisco bigram occur a lot.
* Francisco ONLY follows San

* C(San Francisco)= C(Francisco) > C(glasses)
 but glasses are in many bigram types.

max (c(wij_1w;) —d,0)
c(wi—1)

Pen(wilwi—1) =

+ A (Wi—1)PcONTINUATION (Wi)

New unigram distribution

* How many bigram types end with
Francisco?

* How many bigram types end with glasses?

* Ntypes(?, Francisco) < Ntypes(?, glasses)
these are called continuation count.

[{wi-1 : c(wi—1w;) > O}|
wj-1,wj) : c(wj-1wj) > 0}

PcONTINUATION (Wi) = T

Example

e YZ bigram

max(c(wij_1w;) —d,0)

c(wi—1)

Pen (Wil wi1) = + A (Wi-1)PCONTINUATION (Wi)

* c(.) = # tokens ; cont(.) = # types
e first term = max(c(YZ) - d,0) / ¢(Y?)
» second term = cont(!Z) / cont(??)

* lambda(Y?) = d / c(Y?) * cont(Y?)

Putting it all together

e Use recursion to derive trigram and 4-gram and
so on

max(cxy (Wi—n+1wi) —d,0)

1
PxN (Wl ’Wz n—|—1) +A (W;—n—l—l)PKN(Wl |Wl n—|—2)

ckN(Wi 1)
* cyn = actual count for the highest order model

* Cy N = continuation count for lower order models
e 5-Gram (modified) KN LM is the state-of-the-art
N-gram language model
> use different d in each recursion step
> tune for the best d. How do we tune?

Example of trigram continuation
count

o XYZ trigram

max(c(zyz) — d,0)

Py (z|zy) = (g - AMxy?) Prn (2]y)
Pan(ely) = 2 4 AW Prex (2

Prn(2) = maX(NN(zjg)_ 40) A7) P (base)
Pren (base) = —— — —

More practical issues

* Always use log-probability. Why!?
e There are too many n-grams to keep in
the memory.

° prune the entries

> store integer log probability instead
log(0.00005) = -9.9034 = -9

what do we lose? what do we gain!?

Evaluation

* What is a good LM!?

* How do you estimate how well your LM
fits a corpus once you'’re done!
> Extrinsic

o Intrinsic

* Also important for tuning parameter e.g.
the discounting factor d in KN.

Data split

* Training set is used for training the model.
> Collecting n-gram counts
e Development set is used for tuning the
model.
° Trying out different discount factors
° Trying out trigram vs 4-gram
° Finding out optimal interpolation weights
* Test set

> Don’t peek. Evaluate on it at the very end.

Extrinsic Evaluation

 The LM is embedded in a wider
application. Examples?

* Pros
- directly estimate the performance gain

» Cons
> slow
> specific to the application

Intrinsic Evaluation

= The LM is evaluated directly using some
measures:

= Perplexity
* Cross-entropy

Perplexity

¢ If our language model is good at predicting the next
word, then we should be less perplexed when we see

the next word.

* How much probability does a grammar or
(LM) assign to the sentences of a corpus,
compared to another LM?

P(wiwa...wn)™ N

Y L
P (wl Wa...WN

PP(W)

Evaluating using perplexity

= Minimizing perplexity is the same as

maximizing probability

* Higher probability means lower
Perplexity = better LM

" The better the prediction, the lower
perplexity

" The lower the perplexity, the closer we are to
the true underlying language model.

How to train a good LM?

e Higher order is usually the better, but you
must have enough data to train it.

 Sophisticated model vs More data
 Backoff vs Interpolation

cross-entropy of test data (bits/token)

cross-entropy of baseline for Switchboard and Broadcast News corpora

11 &

105 b

k- BN 2-gram]
SRR

R

= SWB 2-gram %%)
7 L SWB 3-gram BN 3-gram]
100 1000 10000 100000

training set size (sentences)

Test data BLEU

0.44

0.42

0.4

0.38

0.36

0.34

_ +0.51BP/x2@ H___.,__..----c------—""
c;@ +0.15BP/x2

i & * +0.39BP/x2 1

+O.568ngﬁ;,a~/

_ * #0.70BP/x2 ‘
target KN ——
+ldcnews KN -

| +webnews KN - §
= target SB @
+0.66BP/x2 +|dchews SB = -~

- +webnews SB o~ _
~ . twebsSB e

10 100 1000 10000 100000 1e+06

LM training data size in million tokens

Modeling vs Data

* If we have tons and tons of data, we can
get away with a stupid model.

e But can’t we just always dump in more
data?

target webnews | web

tokens 237M 31G 1.8T
vocab size 200k SM 16M
n-grams 25TM 21G 300G
LM size (SB) | 2G 89G 1.8T

time (SB) 20 min 8 hours 1 day
time (KN) 2.5 hours | 2 days ~
machines 100 400 1500

Table 2: Sizes and approximate training times for
3 language models with Stupid Backoff (SB) and
Kneser-Ney Smoothing (KN).

diff in test cross-entropy from baseline (bits/token)

relative performance of algorithms on Broadcast News corpus, 3-gram

0.1 r T

N
N

T T T

jelinek-mercer-baselin

=
)
O
1
%‘g
)
)
o
N
=
o
<
3
o
on
o
o
W
@]
=]

11 g X

El

1
<
[a—
W

I
1

kneser-ney-mod g

100 1000 10000
training set size (sentences)

100000

Take-away messages

* LMs assign probabilities to a sequence of
words.

* N-gram language model considers limited

size of context (up to n-| previous
words)

e Data sparsity makes things hard.
> smoothing, backoff, and interpolation

> dumping in more data

Example

o Example in terms of word-level
perplexity:
> The perplexity of a text with respect to the
word "ice":

Represents the number of words which could follow
it.
There are some given number of words which may
follow the word "ice" (cream, age, and cube),

similarly, some words which would most likely not
follow "ice" (nuclear, peripheral, and happily).

Since the number of possible words which
could follow "ice" is relatively high, its
perplexity is high. Why?

» Automating Authorship attribution

> Problem:

identifying the author of an anonymous text, or text
whose authorship is in doubt

Plagiarism detection

- Common approaches:
Determine authorship using stylistic analysis

Based on lexical measures representing:
- the richness of the author's vocabulary

- the frequency of common word use

Two steps:

- style markers

- classification procedure

» Disadvantage:

- Techniques used for style marker extraction
are almost always language dependent

- feature selection is not a trivial process,

> Involves setting thresholds to eliminate
uninformative features

- perform their analysis at the word level

 New Approach:

- a byte-level n-gram author profile of an
author's writing.

choosing the optimal set of n-grams to be included
in the profile,

calculating the similarity between two profiles.

References

« Manning, C.D., and Schutze, H. (1999). Foundations of Statistical Natural Language Processing, MIT
Press, Cambridge, MA.

« Julia Hirschberg, n-grams and corpus linguistics, Power point presentations,
(Accessed November 14, 2010)

« Julia Hockenmaier, Probability theory, N-gram and Perplexity, Powerpoint slides,
(Accessed November 14, 2010)

* Probability and Language Model, , (Accessed
November 14, 2010)

« Vlado Keselj, Fuchun Peng, Nick Cercone, and Calvin Thomas. (2003). N-gram-based Author Profiles
for Authorship Attribution, In Proceedings of the Conference Pacific Association for Computational
Linguistics, PACLING'03, Dalhousie University, Halifax, Nova Scotia, Canada, pp. 255-264, August
2003.

