
Introduction to N-gram Models

COSI 114 – Computational Linguistics
James Pustejovsky

January 23, 2015
Brandeis University

Outline
�  Human Word

Presentation
�  Language Model
�  N-gram
�  N-gram Language

Model
�  Markov chain
�  Training and Testing
�  Example
�  Reduce Number of

Parameters in N-
gram

�  Maximum Likelihood
Estimation(MLE)

�  Sparse Data
Problem

�  Smoothing and
Backoff

�  Zipf’s Law
�  Evaluation
�  Application

Language model

� Predicting the next word
� Evaluating how ‘English’ a sequence of

words is

Next Word Presentation
�  From The Boston Globe 1/19/15
◦  A mother …
◦  A mother was ….
◦  A mother was found ….
◦  A mother was found dead …
◦  A mother was found dead and her ….
◦  A mother was found dead and her son was

shot and …
◦  A mother was found dead and her son was

shot and killed by police early Monday.

Human Word Prediction
� We may have ability to predict future

words in an utterance

� How?
◦ Domain Knowledge
�  red blood
◦ Syntactic knowledge
�  j’ai vu la …<feminine adj | feminine noun>
◦  Lexical knowledge
�  baked <potato,beans,cod>

Predictive keyboard

Grammar checker

� The difference is that we don’t eat beef.
The difference are that we don’t eat beef.

� The difference is that we don’t eat beef.
The difference is is that we don’t eat beef.

�  I wish I was there.
I wish I were there.

Statistical Machine Translation

� Make the translation sound fluent
� Which one sounds the best?
◦  he introduced reporters to the main contents

of the statement
◦  he briefed to reporters the main contents of

the statement
◦  he briefed reporters on the main contents of

the statement

Applications
� LM usually does not stand alone.
◦  spelling correction
�  Detect the error (low probability)
�  Correct the error by increasing probability

�  Theatre owners say popcorn/unicorn sales have doubled...

◦  speech recognition
�  providing context

�  along with Starbucks lovers
�  a long list of ex loves

Language Model
� Language Model (LM)
◦ A language model is a probability

distribution over entire sentences or texts
�  N-gram: unigrams, bigrams, trigrams,…

�  In a simple n-gram language model,

the probability of a word, conditioned
on some number of previous words

N-grams
�  In other words, using the previous N-1

words in a sequence we want to
predict the next word

◦ Sue swallowed a large green ____.
�  A. frog
�  B. mountain
�  C. car
�  D. pill

What is an N-gram?
§  An n-gram is a subsequence of n items

from a given sequence.
§ Unigram: n-gram of size 1
§ Bigram: n-gram of size 2
§ Trigram: n-gram of size 3

§  Item:
�  Phonemes
�  Syllables
�  Letters
�  Words
�  Anything else depending on the application.

Example
 input=the dog smelled like a skunk

�  # = bos and eos
� Bigram:
◦  # the, the dog, dog smelled, smelled like,

like a, a skunk, skunk#

� Trigram:
◦  "# the dog", "the dog smelled", "dog

smelled like", "smelled like a", "like a
skunk" and "a skunk #".

How to predict the next word?
�  Assume a language has T word types in its

lexicon, how likely is word x to follow word y?

�  Solutions:
◦  Estimate likelihood of x occurring in new text,

based on its general frequency of occurrence
estimated from a corpus
�  popcorn is more likely to occur than unicorn
◦  Condition the likelihood of x occurring in the

context of previous words (bigrams, trigrams,…)
�  mythical unicorn is more likely than mythical popcorn

Estimate PDF

� With large enough dataset
P(X=x, S=s) can be estimated with
 C(X=x, S=s) in the dataset
 size of dataset

� P(X=x|S=s) can be estimated with
 C(X=x, S=s) in the dataset
 C(S=s) in the dataset

� More examples in lab next week

Predicting the next word from
corpora
� P(love| but he will) =

 C(but he will love) / C (he will love)

Statistical View
�  The task of predicting the next word can

be stated as:
◦  attempting to estimate the probability

distribution function P:

�  In other words:
◦  we use a classification of the previous history

words (or context), to predict the next word.
◦ On the basis of having looked at a lot of text,

we know which words tend to follow other
words.

How to assign probabilities to a
sequence of words
�  Statistical Machine Learning
◦ We use language model to give probabilities

to the translation outputs.
◦ High probability = better translation

�  P(“he briefed reporters on the main contents of the statement”) =
 C(“he briefed reporters on the main contents of the statement”)
 C(all possible sequence of words)

� To solve this, we use Chain Rule +
Markov Assumption

N-Gram Models
� Models Sequences using the

Statistical Properties of N-Grams

�  Idea: Shannon
◦  given a sequence of letters, what is the

likelihood of the next letter?
◦ From training data, derive a probability

distribution for the next letter given a
history of size n.

N-gram Model is a Markov Chain
•  Give a set of states, S = {s1, s2, ... , sr}.

•  The process starts in a random state based on a
probability distribution

•  Change states in sequence based on a probability
distribution of the next state given the previous state

•  This model could generate the sequence {A,C,D,B,C}
of length 5 with probability:

Markov Assumption
�  Markov assumption: the probability of the next

word depends only on the previous k words.

�  Common N-grams:

Using N-Grams
�  For N-gram models

◦  P(w1,w2, ...,wn)

◦  By the Chain Rule we can decompose a joint
probability, e.g. P(w1,w2,w3) as follows:
 P(w1,w2, ...,wn) = P(w1|w2,w3,...,wn) P(w2|w3, ...,wn) …
P(wn-1|wn) P(wn)

∏≈
=

−
n

k
wkwkPwnP

1
1

1)|()1(

Example
� Compute the product of component

conditional probabilities?
◦ P(the mythical unicorn) = P(the) ∗

P(mythical | the) ∗ P(unicorn|the mythical)

� How to calculate these probability?

Training and Testing
� N-Gram probabilities come from a

training corpus
◦  overly narrow corpus: probabilities don't

generalize
◦  overly general corpus: probabilities don't

reflect task or domain

� A separate test corpus is used to
evaluate the model

A Simple Bigram Example
� Estimate the likelihood of the sentence:

 I want to eat Chinese food.

◦  P(I want to eat Chinese food) = P(I | <start>)
P(want | I) P(to | want) P(eat | to) P(Chinese |
eat) P(food | Chinese) P(<end>|food)

� What do we need to calculate these
likelihoods?
◦  Bigram probabilities for each word pair

sequence in the sentence
◦  Calculated from a large corpus

Early Bigram Probabilities from
BERP

The Berkeley Restaurant Project (BeRP) is a testbed for a speech recognition systems developed by the
International Computer Science Institute in Berkeley, CA

� P(I want to eat British food) =
 P(I | <start>) P(want | I) P(to | want) P(eat |

to)
P(British | eat) P(food | British) =
 .25*.32*.65*.26*.001*.60 = .
000080

� N-gram models can be trained by
counting and normalization

Calculating N-gram Probabilities
�  Given a certain number of pieces of training

data, the second goal is then finding out :
◦  how to derive a good probability estimate for the

target feature based on these data.

�  For our running example of n-grams, we will
be interested in and the
prediction task , since:

Maximum Likelihood Estimation

� Given:
◦  C(w1w2…wn): the frequency of w1w2…wn

in the training text
◦ N: the total number of training n-grams:

Early BERP Bigram Counts

0 1 0 0 0 0 4 Lunch

0 0 0 0 17 0 19 Food

1 120 0 0 0 0 2 Chinese

52 2 19 0 2 0 0 Eat

12 0 3 860 10 0 3 To

6 8 6 0 786 0 3 Want

0 0 0 13 0 1087 8 I

lunch Food Chinese Eat To Want I

Early BERP Bigram Probabilities

� Normalization: divide each row's counts
by appropriate unigram counts for wn-1

� Computing the bigram probability of “I I”
◦  C(I,I)/C(all I)
◦  p (I|I) = 8 / 3437 = .0023

Calculating N-gram Probabilities
�  Given a certain number of pieces of training

data, the second goal is then finding out :
◦  how to derive a good probability estimate for the

target feature based on these data.

�  For our running example of n-grams, we will
be interested in and the
prediction task , since:

Maximum Likelihood Estimation

� Given:
◦  C(w1w2…wn): the frequency of w1w2…wn

in the training text
◦ N: the total number of training n-grams:

N-gram Parameters
�  Is a high-order n-gram needed?

 P(Most biologists and folklore specialists believe that

in fact the mythical unicorn horns derived from the
narwhal)

�  Issues:
◦ The longer the sequence, the less likely

we are to find it in a training corpus
◦ The larger the n, the more the number of

parameters to estimate

Computing Number of
Parameters
�  Assume that a speaker is staying within a

vocabulary of 20,000 words ,we want to see
the estimates for numbers of parameters

�  For this reason, n-gram systems currently
use bigrams or trigrams (and often make do
with a smaller vocabulary).

How to Reduce the Number of
Parameters?
� Reducing the number of parameters:
◦ Stemming
◦ Semantic classes

�  In practice, it is hard to beat a trigram
model for language modeling.

Calculating N-gram Probabilities
�  Given a certain number of pieces of training

data, the second goal is then finding out :
◦  how to derive a good probability estimate for the

target feature based on these data.

�  For our running example of n-grams, we will
be interested in and the
prediction task , since:

Maximum Likelihood Estimation

� Given:
◦  C(w1w2…wn): the frequency of w1w2…wn

in the training text
◦ N: the total number of training n-grams:

Even trigram can be too rare
�  What’s the count of C(“Robin kissed Hulk”)?
�  It is conceivable but probably shows up in

the corpus.

Sparse Data Problem
�  MLE is in general unsuitable for statistical

inference in NLP because small parameters are
hard to estimate.

�  The problem is the sparseness of our data (even
with the large corpus).
◦  The vast majority of words are very uncommon
◦  longer n-grams involving them are thus much rarer

�  The MLE assigns a zero probability to unseen
events
◦  Bad …because the probability of the whole

sequences will be zero
�  computed by multiplying the probabilities of subparts

Solution
§  how do you handle unseen n-grams?

§ Smoothing

§ Backoff

§  Interpolation

Smoothing
§  With MLE, a missing k-gram means zero

probability and any longer n-gram that contains
the k-gram will also have a zero probability.

§  Words follow a Zipfian distribution
§  no matter how big is a training set, there will always

be a lot of rare events that may not be covered.

§  Discounting/smoothing techniques:
§  allocate some probability mass for the missing n-

grams

Zipf’s Law
� Given the frequency f of a word and

its rank r in the list of words ordered:
by their frequencies:

Laplace Smoothing
�  Add 1 to all frequency counts. (not MLE

anymore)
�  Let V be the vocabulary size

�  Bigram:

�  n-gram:

Unigram Smoothing Example

�  Tiny Corpus, V=4; N=20

Word True Ct Unigram
Prob

New Ct Adjusted
Prob

eat 10 .5 11 .46

British 4 .2 5 .21

food 6 .3 7 .29

happily 0 .0 1 .04

20 1.0 ~20 1.0

VN
cwP i

iLP

+
+= 1)(

Problem with Laplace Smoothing
§  Problem: give too much probability mass to

unseen n-grams.

§  For sparse sets of data over large vocabularies,
such as n-grams, Laplace's law actually gives far
too much of the probability space to unseen
events.

§  Can we smooth more usefully?

Lidstone’s Law: Add-λ Smoothing

�  Need to choose

�  It works better than add-one, but still works
horribly

Other estimators
� Given N-gram hierarchy
◦ P3(w3|w1,w2), P2(w3|w2), P1(w3)

� Combine these lower-order models
◦  Interpolation

� Back off to a lower-order model
◦  backoff

Backoff Estimator
� Backoff is an alternative to smoothing for

e.g. trigrams
◦  try to fill any gap in n-grams at level n by

looking 'back' to level n-1
� Example:
◦  If a particular trigram ”Robin kissed Hulk" has

zero frequency
◦ Maybe the bigram ”kissed Hulk" has a non-

zero count
� At worst, we back off all the way to

unigrams and we do smoothing, if we are
still losing

Last time

� What’s the purpose of language modeling?
� Why do we like 5-gram model?
� What’s the solution to the sparsity

problem?

This time

� Backoff
�  Interpolation
� Kneser-Ney = Discounting + Interpolating

Stupid Backoff

� Given a trigram xyz
� Backoff and downweight

� What’s the problem with this approach?

S(z|x, y) =
(

count(xyz)
count(xy) if count(xyz) > 0

�S(z|y) otherwise

Google NGrams

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-
you.html

Katz Backoff

� Unlike Stupid Backoff, Katz Backoff figures
out the normalization factor (alpha).

Interpolation

� Consult all models at once but trust the
higher order model more.

� Ensure valid PDF with the normalization

factor �1 + �2 + �3 = 1

Kneser-Ney smoothing

�  Still state-of-the-art n-gram LM
�  It starts with Absolute Discounting

Intuition of KN smoothing

� Lower order model is important only
when higher order model is sparse.

� λ should be optimized to perform in such
situations

KN Smoothing example

I can’t see without my reading _____ .
�  San Francisco bigram occur a lot.
�  Francisco ONLY follows San
�  C(San Francisco)= C(Francisco) > C(glasses)

� but glasses are in many bigram types.

New unigram distribution

� How many bigram types end with
Francisco?

� How many bigram types end with glasses?
� Ntypes(?, Francisco) < Ntypes(?, glasses)

these are called continuation count.

Example

� YZ bigram

�  c(.) = # tokens ; cont(.) = # types
�  first term = max(c(YZ) - d, 0) / c(Y?)
�  second term = cont(?Z) / cont(??)

�  lambda(Y?) = d / c(Y?) * cont(Y?)

Putting it all together
�  Use recursion to derive trigram and 4-gram and

so on

�  cKN = actual count for the highest order model
�  cKN = continuation count for lower order models
�  5-Gram (modified) KN LM is the state-of-the-art

N-gram language model
◦  use different d in each recursion step
◦  tune for the best d. How do we tune?

Example of trigram continuation
count
� XYZ trigram

PKN (z|xy) = max(c(xyz)� d, 0)

c(xy)

+ �(xy?)PKN (z|y)

PKN (z|y) = max(N(?yz)� d, 0)

N(?y?)

+ �(y?)PKN (z)

PKN (z) =

max(N(?z)� d, 0)

N(??)

+ �(?)PKN (base)

PKN (base) =

1

N(?)

=

1

V

More practical issues

� Always use log-probability. Why?
� There are too many n-grams to keep in

the memory.
◦  prune the entries
◦  store integer log probability instead
�  log(0.00005) ≈ -9.9034 ≈ -9
�  what do we lose? what do we gain?

Evaluation

� What is a good LM?
� How do you estimate how well your LM

fits a corpus once you’re done?
◦  Extrinsic
◦  Intrinsic

� Also important for tuning parameter e.g.
the discounting factor d in KN.

Data split

� Training set is used for training the model.
◦ Collecting n-gram counts

� Development set is used for tuning the
model.
◦ Trying out different discount factors
◦ Trying out trigram vs 4-gram
◦  Finding out optimal interpolation weights

� Test set
◦ Don’t peek. Evaluate on it at the very end.

Extrinsic Evaluation
� The LM is embedded in a wider

application. Examples?
� Pros
◦  directly estimate the performance gain

� Cons
◦  slow
◦  specific to the application

Intrinsic Evaluation
§  The LM is evaluated directly using some

measures:
§  Perplexity
§  Cross-entropy

Perplexity
�  If our language model is good at predicting the next

word, then we should be less perplexed when we see
the next word.

�  How much probability does a grammar or language
model (LM) assign to the sentences of a corpus,
compared to another LM?

Evaluating using perplexity
§  Minimizing perplexity is the same as

maximizing probability
§ Higher probability means lower

Perplexity = better LM
§ The better the prediction, the lower

perplexity
§ The lower the perplexity, the closer we are to

the true underlying language model.

How to train a good LM?

� Higher order is usually the better, but you
must have enough data to train it.

�  Sophisticated model vs More data
� Backoff vs Interpolation

Modeling vs Data

�  If we have tons and tons of data, we can
get away with a stupid model.

� But can’t we just always dump in more
data?

Take-away messages

� LMs assign probabilities to a sequence of
words.

� N-gram language model considers limited
size of context (up to n-1 previous
words)

� Data sparsity makes things hard.
◦  smoothing, backoff, and interpolation
◦  dumping in more data

Example
� Example in terms of word-level

perplexity:
◦  The perplexity of a text with respect to the

word "ice“:
�  Represents the number of words which could follow

it.
�  There are some given number of words which may

follow the word "ice" (cream, age, and cube),
�  similarly, some words which would most likely not

follow "ice" (nuclear, peripheral, and happily).
�  Since the number of possible words which

could follow "ice" is relatively high, its
perplexity is high. Why?

� Automating Authorship attribution
◦  Problem:
�  identifying the author of an anonymous text, or text

whose authorship is in doubt
�  Plagiarism detection

◦  Common approaches:
�  Determine authorship using stylistic analysis
�  Based on lexical measures representing:

�  the richness of the author's vocabulary
�  the frequency of common word use

�  Two steps:
�  style markers
�  classification procedure

� Disadvantage:
◦  Techniques used for style marker extraction

are almost always language dependent
◦  feature selection is not a trivial process,
◦  involves setting thresholds to eliminate

uninformative features
◦  perform their analysis at the word level

� New Approach:
◦  a byte-level n-gram author profile of an

author's writing.
�  choosing the optimal set of n-grams to be included

in the profile,
�  calculating the similarity between two profiles.

References
�  Manning, C.D., and Schutze, H. (1999). Foundations of Statistical Natural Language Processing, MIT

Press, Cambridge, MA.

�  Julia Hirschberg, n-grams and corpus linguistics, Power point presentations,
www.cs.columbia.edu/~julia/courses/CS4705/ngrams.ppt (Accessed November 14, 2010)

�  Julia Hockenmaier, Probability theory, N-gram and Perplexity, Powerpoint slides,
http://www.cs.uiuc.edu/class/fa08/cs498jh/Slides/Lecture3.pdf (Accessed November 14, 2010)

�  Probability and Language Model, www.cis.upenn.edu/~cis530/slides-2010/Lecture2.ppt, (Accessed
November 14, 2010)

�  Vlado Keselj, Fuchun Peng, Nick Cercone, and Calvin Thomas. (2003). N-gram-based Author Profiles
for Authorship Attribution, In Proceedings of the Conference Pacific Association for Computational
Linguistics, PACLING'03, Dalhousie University, Halifax, Nova Scotia, Canada, pp. 255-264, August
2003.

