The Basics of Regular
Expressions

COSI | 14 — Computational Linguistics
James Pustejovsky

January 13,2015

Brandeis University

Regular Expressions

* In computer science, RE is a language used
for specifying text search strings.

A regular expression is a formula in a special

language that is used for specifying a simple
class of string.

e Formally, a regular expression is an algebraic
notation for characterizing a set of strings.
» RE search requires

° a pattern that we want to search for; and
° a corpus of texts to search through.

Regular Expressions

* A RE search function will search through
the corpus returning all texts that contain
the pattern.

° In aWeb search engine, they might be the
entire documents or VWeb pages.

° In a word-processor, they might be individual
words, or lines of a document. (We take this
paradigm.)

E.g.,the UNIX grep command

Regular Expressions
Basic Regular Expression Patterns

* The use of the brackets [] to specify a disjunction of characters.

RE Match Example Patterns

/ [wW] oodchuck/ | Woodchuck or woodchuck | “Woodchuck™

/ [abc] / a’, ‘b’ or ¢’ “In uomini, in soldati”
/[1234567890] /| any digit “plenty of 7to 57

e The use of the brackets [] plus the dash - to specify a range.

RE Match Example Patterns Matched

/ [A-Z] /| an uppercase letter | “we should call it *Drenched Blossoms™
/ [a-z] /| alowercase letter | “my beans were impatient to be hoed!”
/ [0-8] /| asingle digit “Chapter 1: Down the Rabbit Hole™

Regular Expressions
Basic Regular Expression Patterns

e Uses of the caret © for negation or just to mean "

RE Match (single characters) [Example Patterns Matched
["TA-Z] | notan uppercase letter “Oytn pripetchik™

["Ss] neither *S” nor s’ “1 have no exquisite reason for’t”
("N] not a period “our resident Djinn”

[e”] either ‘e’ or *"°’ “look up ~_ now”

a'b the pattern ‘a"b’ “look up a” b now™

* The question-mark ? marks optionality of the previous expression.

RE Match Example Patterns Matched
woodchucks? | woodchuck or woodchucks | “woodchuck™

colou?r color or colour “colour™

* The use of period . to specify any character

RE Match Example Patterns
/beg.n/ any character between heg and n begin, beg’n, begun

Regular Expressions
Disjunction, Grouping, and Precedence

* Disjunction
/cat |dog

* Precedence

/gupp (y|ies)

* Operator precedence hierarchy

()
+ 2?2 { }

the "my end$
|

Regular Expressions
A Simple Example

 To find the English article the
/the/

/[tT]lhe/
/\b[tT]he\b/

/["a-zA-Z][tT]he["a-zA-Z]/

/™| ["a-zA-Z] [tT]lhe["a-zA-Z]/

Regular Expressions
A More Complex Example

» ‘“any PC with more than 500 MHz and 32 Gb of disk space for less than $1000”
/$[0-91+/
/$[0-9]1+\.[0-9][0-9]/
/\PS[0-9]+(\.[0-9][0-9]) ?\b/
/\b[0-9]+ * (MHz| [Mm]egahertz|GHz| [Gg]igahertz)\b/
/\b[0-9]+ * (Mb| [Mm]egabytes?)\b/
/\b[0-9] (\.[0-9]+)? *(Gb| [Gg]igabytes?)\b/
/\D (Win95|Win98 |WinNT |Windows * (NT|95]198|2000)?)\b/

/\b (Mac |[Macintosh |Apple) \b/

Regular Expressions
Advanced Operators

Aliases for common sets of characters

RE| Expansion Match Example Patterns
\d| [0-9] any digit Party_of_5
D| [T0-9] any non-digit Blue_moon
w| [a-zA-Z0-9_.,]| any alphanumeric or space | Daiyu
Wl [T\w] a non-alphanumeric 1
) [_A\r\E\n\ £] whitespace (space, tab)
S [T\ s] Non-whitespace in_ Concord

Regular Expressions
Advanced Operators

Regular expression operators for counting

RE Match

* zero or more occurrences of the previous char or expression

- one or more occurrences of the previous char or expression

? exactly zero or one occurrence of the previous char or expression
{n} n occurrences of the previous char or expression

{n,m} | from n to m occurrences of the previous char or expression

{n,} |atleast n occurrences of the previous char or expression

Regular Expressions

Advanced Operators

Some characters that need to be backslashed

RE Match Example Patterns Matched

\ * an asterisk “*” “KEAF*PFL*A*N™

\. a period ©.” “Dr. Livingston, I presume”
\7? a question mark “Would you light my candle?”
\n a newline

\t a tab

Regular Expressions
Regular Expression Substitution, Memory, and ELIZA

s/regexpl/regexp2/
» E.g.the 35 boxes — the <35> boxes
s/ ([0=-9714+) /<\1>/

* The following pattern matches “The bigger they were, the bigger they will
be”, not “The bigger they were, the faster they will be”

/the (.*)er they were, the\ler they will be/

* The following pattern matches “The bigger they were, the bigger they
were”, not “The bigger they were, the bigger they will be”

/the (.*)er they (.*), the\ler they \2/

registers

Regular Expressions
Regular Expressions Substitution, Memory, and ELIZA

* Eliza worked b{\ having a cascade of regular expression substitutions

that each matc

some part of the input lines and changed them

° my — YOUR,I'm — YOUARE ...

s/.*
s/.*
s/.*

s/.*

YOU ARE (depressed]|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
YOU ARE (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/

all .*/IN WHAT WAY/
always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

User,: Men are all alike.

ELIZA,: IN WHAT WAY

User,:They’re always bugging us about something or other.
ELIZA,: CAN YOU THINK OF A SPECIFIC EXAMPLE
User;:Well, my boyfriend made me come here.
ELIZA;:YOUR BOYBRIEND MADEYOU COME HERE
User,: He says I'm depressed much of the time.

ELIZA,:1 AM SORRY TO HEAR YOU ARE DEPRESSED

Operations on strings

* Given two strings s = a,...a_and t = b,...b_,
we define their st = a,...a_by...
b

m
s = abb, t = cba st = abbcba

e We define s”as the concatenation ss...s # times

s = 011 s> = 011011011

Operations on languages
* The of languages I, and [, is

e Similarly, we write .7 for L.L....L (» times)

* The of languages 1., U L, is the set of all
strings that are in [, or in L,

° L, =101,0}, L, = ¢, 1,11, 111, ...}.
Whatis I,1., and I, U [.)?

Operations on languages

* The (Kleene closure) of L. are all
strings made up of zero or more chunks
from L.

o This is always infinite, and always contains ¢

. L, ={01,0}, L, = {e 1,11, 111,

)
What is [.,;" and [.,"?

Constructing languages with
operations

* Let’s fix an alphabet, say X = {0, 1}

* We can construct languages by starting with
simple ones, like {0}, {1} and combining them

(0310} U1}y >

all strings that start with 0

({0} {19003 >

Regular expressions

o A over X is an expression
formed using the following rules:

> The symbol @ is a regular expression
> The symbol ¢ is a regular expression
> For every a € Z, the symbol a is a regular expression

° If R and S are regular expressions, so are RS, R+S and
R*.

» Definition of regular language

regular

A A R o S

Examples

01* = {0, 01,011, 0111,}

(01%)(01) = {001, 0101, 01101, 011101,}
(0+1)*

(0+1)*01(0+1)*
((0+1)(0+1)+(0+1)(0+1)(0+1)*
((0+1)(0+1)*+((0+1)(0+1) (0+1))*
(1+01+001)*(&+0+00)

Examples

e Construct a RE over X = {0,1} that
represents

o All strings that have

(O+1)*00(0+1)*
o All strings those with two consecutive
Os.
(1*01)*1* + (1*01)*1*0
o All strings with an of Os.

(1%01*01%)*

Main theorem for regular languages

~» Theorem

e
N~ ¢

regular languages

Proof plan

* For every regular expression, we have to
give a DFA for the same language

e

* For every DFA, we give a regular
expression for the same language

What is an eNFA?

e An eNFA is an extension of NFA where some
transitions can be labeled by ¢

> Formally, the transition function of an eNFA is a

function
0: O X (2) — subsets of

e The automaton is allowed to follow e-transitions

Example of eNFA

d : q = S = {a.b)

* Which of the following is accepted by this
eNFA:

° aab, bab, ab, bb, a, €

Examples: regular expression —
eNFA

QRZZO—|—1

R; = (0+ 1)

General method

- regular expr ' eNFA

@
. 0

symbol a
i

Convention

* When we draw a box around an eNFA:
> The points to the start state

> The represents all transitions going out
of accepting states

> None of the states inside the box is accepting

> The labels of the states inside the box are from
all other states in the diagram

General method continued

- regular expr ' eNFA

R+ S

Road map

a
o
P
A
FoN
»
\
\, i
~d

T N I

<

Example of eNFA to NFA
conversion

b fQ L e
eNFA: —»@ 5 'Cy >

a

Transition table of corresponding NFA:

inputs
a b
Yo {d0> 91> G} {91, 9}
% 94 o> 91> G2 %
? Sk & %)

Accepting states of NFA: {90> 91> D}

Example of eNFA to NFA
conversion

b fQ L e
eNFA: —@ & SH >
< R v
a a, b a
a, b

NFA:

a v

General method

* To convert an eNFA to an NFA:
0 stay the same
o stays the same

> The NFA has a from q; to q; labeled
a iff the eNFA has a from g, to q; that
contains one transition labeled a and all other
transitions labeled ¢

> The of the NFA are all states
that can reach some accepting state of eNFA
using

Why the conversion works

In the original e-NFA, when given input a,a,...a_the

automaton goes through a
Qo7 DU QT - T Dy
Some ¢-transitions may be in the sequence:

Q> 9, .. >q, > ... >,
€ a € € a, € € €

In the new NFA, each sequence of states of the
form:

q%i—} ak 18 qz/é+1

wiII be represented by a

NEA.

s i, because of the way we construct the

Proof that the conversion works

e More formally, we have the following
for any

* We prove this by induction on £

e When £ = (0, the eNFA can be in more
states, while the NFA must be in q,

Proof that the conversion works

* When (input is the empty string)
o If eNFA is in an accepting state, so is NFA

> Conversely, if NFA is an accepting state g, then
some accepting state of eNFA is reachable from
q, so ENFA accepts also

* When (input is the empty string)

> The eNFA accepts iff one of its accepting states is
reachable from q

> This is true iff q, is an accepting state of the NFA

From DFA to regular expressions

Example

» Construct a regular expression for this DFA:

0 1

1
—() '
) 0

:

0+ 1)*0 + ¢

- General method
~* We have a DFA M with states q,, q,,..- q,

* We will inductively define regular expressions Rf

intermediate states
only

R,,"={e,0} =¢e+0

R, = {1} =1

R,,’={e, 1} =e+1

R, = {g, 0,00, 000, ..} = 0

R,,! = {1, 01,001, 0001, ..} = 0*1

General construction
» We define R * as:

RY=a +a +..+a +¢
4 Zl 22 Zj
aZ.)a. ,...,a.
72 %
(all loops around g; and)

0 —

i if 77/ @ 28,50
(@l q;— q)

k£ — R A1 £-1 f-1 k-1
Ry‘ = Ry + R, (Rey)*R/éj

(fOI" ~ > O) d,

a path in M

Informal proof of correctness

» Each execution of the DFA using states q,, q,,
.. q, Will look like this:

state q, is intermediate parts use
never visited only states q;, q,,-.. 44
N
—

(R)" R@k ;

Final step

» Suppose the DFA start state is g, and the
accepting states are F = {q/iu q, - U qj}‘

» Then the regular expression for this DFA is

Ry " + Ry, + ...+ Ry

All models are equivalent

B 4 L
v

<

Example
» Give a RE for the following DFA using this method:

0+ 1)*0 + ¢

2.2 Finite-State Automata

e An RE is one way of describing a FSA.

* An RE is one way of characterizing a particular
kind of formal language called a regular
language.

regular
expressions

finite regular
automata languages

2.2 Finite-State Automata
Using an FSA to Recognize Sheeptalk

b a a ' [nput
@ a Q Q State||[b a !
0 1 0 0

/baa+!/ l 020

2 0D 30

N
4 000

a|blal|!|Db <

. The transition-state table
A tape with cells

* Automaton (finite automaton, finite-state automaton (FSA))

» State, start state, final state (accepting state)

2.2 Finite-State Automata
Using an FSA to Recognize Sheeptalk

* A finite automaton is formally defined by
the following five parameters:
> Q:a finite set of N states q,, q,, ---, gx
o 2 a finite input alphabet of symbols
° (,: the start state
o F: the set of final states, F C Q

> 0(q,i): the transition function or transition
matrix between states. Given a state g € Q
and input symbol i € X, 0(qg,i) returns a new
state g’ € Q. 0 is thus a relation from Q x X

to Q;

2.2 Finite-State Automata
Using an FSA to Recognize Sheeptalk

* An algorithm for deterministic recognition of FSAs.

function D-RECOGNIZE(tape, machine) returns accept or reject

index +—Beginning of tape
current-state +—Initial state of machine
loop
if End of input has been reached then
if current-state 1s an accept state then
return accepl
else
return reject
elsif transition-table fcurvent-state tape findex]] 1s empty then
return reject

else
current-state —transition-table fcurrent-state, tape [indexj | @ ql @ @ q3 @

index<—index + |
end

2.2 Finite-State Automata

Formal Languages

Key concept #1: Formal Language: A model which can
bot %enerate and recognize all and only the strings of a
formal language acts as a definition of the formal language.

A formal language is a set of strings, each string composed
of symbols from a finite symbol-set call an alphabet.

The usefulness of an automaton for defining a language is that
it can express an infinite set in a closed form.

A formal language may bear no resemblance at all to a real
language (natural language), but

> We often use a formal language to model part of a natural
language, such as parts of the phonology, morphology, or syntax.

The term generative grammar is used in linguistics to
mean a grammar of a formal language.

2.2 Finite-State Automata

Another Example

one Six ten sixty eleven sixteen | _99
two seven twenty seventy twelve seventeen . u berS

three eight thirty eighty thirteen eighteen fEl’\ghSh n

four nine forty ninety fourteen nineteen the Words 0

five fifty fifteen or

twenty sixty
thirty seventy
forty eighty
fifty ninety

seven
three eight
four nine
five

£SA for the Simp'e

one sIx ten SIXty eleven sixteen
two seven twenly seventy twelve seventeen
three eight thirty eighty thirteen eighteen
four mnine forty ninety fourteen nineteen
five fifty fifteen

one sIx ten SIXLy eleven sixteen

two seven twenty sevenly twelve seventeen

three eight thirty eighty thirteen eighteen

four nine forty ninety fourteen nineteen

five fifty fifteen cents

dollars
s cents

one
two seven
three eight
four nine
five

twenty sSIXty
thirty — seventy
forty eighty
fifty ninety

twenty sixty
thirty — seventy
forty eighty
fifty ninety

one sIx
two seven
three eight
four nine
five

2.2 Finite-State Automata
Non-Deterministic FSAs

a
b a ' a !
b a a !

2.2 Finite-State Automata
Using an NFSA to Accept Strings

e Solutions to the problem of
multiple choices in an NFSA

> Backup
o Look-ahead

o Parallelism

[nput
State||]b a ! ¢
0 1 0 00
| @2 00
2 02300
3 00 40
4: @O0 00

Finite-State
Automata

Using an NFSA to
Accept Strings

function ND-RECOGNIZE(tape, machine) returns accept or reject

agenda < {(Initial state of machine, beginning of tape)}
current-search-state<—NEXT(agenda)
loop
if ACCEPT-STATE?(current-search-state) returns true then
return accept
else
agenda<—agenda\) GENERATE-NEW-STATES(curreni-search-state)
if agenda 1s empty then
return reject
else
current-search-state +— NEXT(agenda)
end

function GENERATE-NEW-STATES(curreni-state) returns a set of search-

states

curreni-node <—the node the current search-state 1s in
index <—the point on the tape the current search-state is looking at
return a list of search states from transition table as follows:
(transition-table [current-node, €], index)
o
(transition-table fcurrent-node, tape findex]], index + 1)

function ACCEPT-STATE?(search-state) returns true or false

current-node <—the node search-state 1s in
index +—the point on the tape search-state is looking at
if index 1s at the end of the tape and current-node 1s an accept state of machine
then
return true
else
return false

2.2 Finite-State Automata
Using an NFSA to Accept Strings

4,

1 {v[alalal] 1 13

PN
(q
()
4

\

2 s 13

£
C
() (h |

o~

3 STl T [13

/\

4 ¢ |[bflaJala]!] | | ¢ ¢ [bfafJalal! |

S st T T 732 $1vl[alalal']

3 6
3 7
STolalalalil T 13 8

2.2 Finite-State Automata

Recognition as Search

* Algorithms such as ND-RECOGNIZE are
known as state-space search

* Depth-first search or Last In First
Out (LIFO) strategy

e Breadth-first search or First In First
Out (FIFO) strategy

* More complex search techniques such as
dynamic programming or A*

