The Basics of Regular Expressions

COSI 114 – Computational Linguistics James Pustejovsky

January 13, 2015 Brandeis University

Regular Expressions

- In computer science, RE is a language used for specifying text search strings.
- A regular expression is a formula in a special language that is used for specifying a simple class of string.
- Formally, a regular expression is an algebraic notation for characterizing a set of strings.
- RE search requires
 - a *pattern* that we want to search for, and
 - a corpus of texts to search through.

Regular Expressions

- A RE search function will search through the corpus returning all texts that contain the pattern.
 - In a Web search engine, they might be the entire documents or Web pages.
 - In a word-processor, they might be individual words, or lines of a document. (We take this paradigm.)
 - E.g., the UNIX grep command

Regular Expressions Basic Regular Expression Patterns

• The use of the brackets [] to specify a disjunction of characters.

RE	Match	Example Patterns
/[wW]oodchuck/	Woodchuck or woodchuck	"Woodchuck"
/[abc]/	'a', 'b', <i>or</i> 'c'	"In uomini, in sold <u>a</u> ti"
/[1234567890]/	any digit	"plenty of <u>7</u> to 5"

• The use of the brackets [] plus the dash – to specify a range.

RE	Match	Example Patterns Matched
/[A-Z]/	an uppercase letter	"we should call it ' <u>D</u> renched Blossoms"
/[a-z]/	a lowercase letter	"my beans were impatient to be hoed!"
/[0-9]/	a single digit	"Chapter <u>1</u> : Down the Rabbit Hole"

Regular Expressions Basic Regular Expression Patterns

• Uses of the caret ^ for negation or just to mean ^

RE	Match (single characters)	Example Patterns Matched
[^A-Z]	not an uppercase letter	"Oyfn pripetchik"
[^Ss]	neither 'S' nor 's'	" <u>I</u> have no exquisite reason for't"
[^\.]	not a period	" <u>o</u> ur resident Djinn"
[e^]	either 'e' or '^'	"look up <u></u> now"
a^b	the pattern 'a^b'	"look up <u>a^ b</u> now"

• The question-mark ? marks optionality of the previous expression.

RE	Match	Example Patterns Matched
woodchucks?	woodchuck or woodchucks	"woodchuck"
colou?r	color or colour	" <u>colour</u> "

• The use of period . to specify any character

RE	Match	Example Patterns
/beg.n/	any character between beg and n	begin, beg'n, begun

Regular Expressions Disjunction, Grouping, and Precedence

• Disjunction

/cat|dog

Precedence

/gupp(y|ies)

Operator precedence hierarchy

```
()
+ ? { }
the ^my end$
```


Regular Expressions A Simple Example

• To find the English article the

/the/

/[tT]he/

 $/\b[tT]he\b/$

/[^a-zA-Z][tT]he[^a-zA-Z]/

/^|[^a-zA-Z][tT]he[^a-zA-Z]/

Regular Expressions A More Complex Example

"any PC with more than 500 MHz and 32 Gb of disk space for less than \$1000" /\$[0-9]+/

```
/$[0-9]+\.[0-9][0-9]/
```

/\b\$[0-9]+(\.[0-9][0-9])?\b/

/\b[0-9]+ *(MHz|[Mm]egahertz|GHz|[Gg]igahertz)\b/

```
/\b[0-9]+ *(Mb|[Mm]egabytes?)\b/
```

/\b[0-9](\.[0-9]+)? *(Gb|[Gg]igabytes?)\b/

/\b(Win95|Win98|WinNT|Windows *(NT|95|98|2000)?)\b/

/\b(Mac|Macintosh|Apple)\b/

Regular Expressions Advanced Operators

Aliases for common sets of characters

RE	Expansion	Match	Example Patterns
∖d	[0-9]	any digit	Party_of <u>_5</u>
$\setminus D$	[^0-9]	any non-digit	<u>B</u> lue_moon
∖w	[a-zA-Z0-9_]	any alphanumeric or space	<u>D</u> aiyu
$\setminus W$	[^\w]	a non-alphanumeric	<u>1</u> !!!
∖s	$[_\r\t]$	whitespace (space, tab)	
∖S	[^\s]	Non-whitespace	in_Concord

Regular Expressions Advanced Operators

Regular expression operators for counting

RE	Match
*	zero or more occurrences of the previous char or expression
+	one or more occurrences of the previous char or expression
?	exactly zero or one occurrence of the previous char or expression
{n}	n occurrences of the previous char or expression
{n,m}	from n to m occurrences of the previous char or expression
{n,}	at least n occurrences of the previous char or expression

Regular Expressions Advanced Operators

Some characters that need to be backslashed

RE	Match	Example Patterns Matched
/*	an asterisk "*"	"K <u>*</u> A*P*L*A*N"
\setminus .	a period "."	"Dr <u>.</u> Livingston, I presume"
\?	a question mark	"Would you light my candle?"
∖n	a newline	
\t	a tab	

Regular Expressions Regular Expression Substitution, Memory, and ELIZA

s/regexp1/regexp2/

• E.g. the 35 boxes \rightarrow the <35> boxes

```
s/([0-9]+)/<\1>/
```

• The following pattern matches "The bigger they were, the bigger they will be", not "The bigger they were, the faster they will be"

```
/the (.*)er they were, the ler they will be/
```

• The following pattern matches "The bigger they were, the bigger they were", not "The bigger they were, the bigger they will be"

Regular Expressions Regular Expressions Substitution, Memory, and ELIZA

Eliza worked by having a cascade of regular expression substitutions that each match some part of the input lines and changed them • $my \rightarrow YOUR$, $I'm \rightarrow YOUARE$...

s/.* YOU ARE (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/ s/.* YOU ARE (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/ s/.* all .*/IN WHAT WAY/ s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

User₁: Men are all alike. ELIZA₁: IN WHAT WAY User₂: They're always bugging us about something or other. ELIZA₂: CAN YOU THINK OF A SPECIFIC EXAMPLE User₃: Well, my boyfriend made me come here. ELIZA₃: YOUR BOYBRIEND MADE YOU COME HERE User₄: He says I'm depressed much of the time. ELIZA₄: I AM SORRY TO HEAR YOU ARE DEPRESSED

Operations on strings

• Given two strings $s = a_1...a_n$ and $t = b_1...b_m$, we define their concatenation $st = a_1...a_nb_1...b_m$

s = abb, t = cba st = abbcba

• We define sⁿ as the concatenation ss...s n times

s = 011 $s^3 = 011011011$

Operations on languages

• The concatenation of languages L_1 and L_2 is

$L_1L_2 = \{ \text{st: } s \in L_1, t \in L_2 \}$

- Similarly, we write L^n for LL...L (*n* times)
- The union of languages $L_1 \cup L_2$ is the set of all strings that are in L_1 or in L_2
- Example: $L_1 = \{01, 0\}, L_2 = \{\varepsilon, 1, 11, 111, ...\}$. What is L_1L_2 and $L_1 \cup L_2$?

Operations on languages

• The star (Kleene closure) of *L* are all strings made up of zero or more chunks from *L*:

$L^* = L^0 \cup L^1 \cup L^2 \cup \dots$

- \circ This is always infinite, and always contains ϵ
- Example: $L_1 = \{01, 0\}, L_2 = \{\varepsilon, 1, 11, 111, \dots\}$. What is L_1^* and L_2^* ?

Constructing languages with operations

- Let's fix an alphabet, say $\Sigma = \{0, 1\}$
- We can construct languages by starting with simple ones, like $\{0\}$, $\{1\}$ and combining them

Regular expressions

- A regular expression over Σ is an expression formed using the following rules:
- $^{\circ}$ The symbol \varnothing is a regular expression
- \circ The symbol ϵ is a regular expression
- For every $a \in \Sigma$, the symbol a is a regular expression
- If R and S are regular expressions, so are RS, R+S and R*.

Definition of regular language

A language is regular if it is represented by a regular expression

- 7. $(1+01+001)*(\varepsilon+0+00)$
- 6. $((0+1)(0+1))^* + ((0+1)(0+1)(0+1))^*$
- 5. $((0+1)(0+1)+(0+1)(0+1)(0+1))^*$
- 4. (0+1)*01(0+1)*
- 3. (0+1)*
- 2. $(01^*)(01) = \{001, 0101, 01101, 011101, \ldots\}$
- 1. $01^* = \{0, 01, 011, 0111, \ldots\}$

Examples

Examples

- Construct a RE over $\Sigma = \{0,1\}$ that represents
 - All strings that have two consecutive 0s.

(0+1)*00(0+1)*

• All strings except those with two consecutive 0s.

(1*01)*1* + (1*01)*1*0

 $^{\rm o}$ All strings with an even number of $0{\rm s.}$ $(1{*}01{*}01{*}){*}$

Main theorem for regular languages Theorem

A language is regular if and only if it is the language of some DFA

Proof plan

 For every regular expression, we have to give a DFA for the same language

• For every DFA, we give a regular expression for the same language

What is an εNFA ?

- An ϵ NFA is an extension of NFA where some transitions can be labeled by ϵ
 - Formally, the transition function of an εNFA is a function
 δ: Q × (Σ ∪ {ε}) → subsets of Q
- The automaton is allowed to follow ϵ -transitions without consuming an input symbol

Example of *ENFA*

• Which of the following is accepted by this ϵNFA :

° aab, bab, ab, bb, a, ε

Convention

When we draw a box around an ε NFA:

- The arrow going in points to the start state
- The arrow going out represents all transitions going out of accepting states
- None of the states inside the box is accepting
- The labels of the states inside the box are distinct from all other states in the diagram

General method continued

Road map

Transition table of corresponding NFA:

	inputs		
	а	b	
\mathbf{q}_0	$\{q_0, q_1, q_2\}$	$\{q_1, q_2\}$	
q_1	$\{q_0, q_1, q_2\}$	Ø	
q_2	Ø	Ø	
	$egin{array}{c} q_0 \ q_1 \ q_2 \end{array}$	$\begin{array}{c c} & & \\ & & \\ & & \\ \hline q_0 & \{q_0, q_1, q_2\} \\ q_1 & \{q_0, q_1, q_2\} \\ q_2 & & & & & & \\ \end{array}$	$\begin{array}{c c} & \text{inputs} \\ \hline a & b \\ \hline q_0 & \{q_0, q_1, q_2\} & \{q_1, q_2\} \\ \hline q_1 & \{q_0, q_1, q_2\} & \varnothing \\ \hline q_2 & \varnothing & \varnothing \end{array}$

Accepting states of NFA:

 $\{q_0, q_1, q_2\}$

Example of ε NFA to NFA conversion

General method

- \bullet To convert an ϵNFA to an NFA:
 - States stay the same
 - Start state stays the same
 - The NFA has a transition from q_i to q_j labeled a iff the ϵ NFA has a path from q_i to q_j that contains one transition labeled a and all other transitions labeled ϵ
 - The accepting states of the NFA are all states that can reach some accepting state of ϵ NFA using only ϵ -transitions

Why the conversion works

In the original ε -NFA, when given input $a_1a_2...a_n$ the automaton goes through a sequence of states:

 $q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow \ldots \rightarrow q_m$

Some ε -transitions may be in the sequence:

 $q_0 \xrightarrow{} \dots \xrightarrow{} q_{i_1} \xrightarrow{} \dots \xrightarrow{} q_{i_2} \xrightarrow{} \dots \xrightarrow{} q_{i_n}$ In the new NFA, each sequence of states of the form:

$$q_{i_k} \overrightarrow{\epsilon} a_{k+1} \overrightarrow{\epsilon} q_{i_{k+1}}$$

will be represented by a single transition

 $q_{i_k} \stackrel{a_{k+1}}{\rightarrow} q_{i_{k+1}}$ because of the way we construct the

Proof that the conversion works

• More formally, we have the following invariant for any $k \ge 1$:

After reading k input symbols, the set of states that the ϵ NFA and NFA can be in are exactly the same

- We prove this by induction on k
- When k = 0, the ϵ NFA can be in more states, while the NFA must be in q_0

Proof that the conversion works

- When $k \ge 1$ (input is not the empty string)
 - $\circ\,$ If ϵNFA is in an accepting state, so is NFA
 - Conversely, if NFA is an accepting state q_i , then some accepting state of ϵ NFA is reachable from q_i , so ϵ NFA accepts also
- When k = 0 (input is the empty string)
 - $\circ\,$ The ϵNFA accepts iff one of its accepting states is reachable from q_0
 - $\circ\,$ This is true iff q_0 is an accepting state of the NFA

From DFA to regular expressions

Example

Construct a regular expression for this DFA:

 $(0+1)*0+\epsilon$

General method

• We have a DFA M with states $q_1, q_2, \dots q_n$

We will inductively define regular expressions R_{ij}^{k}

 R_{ij}^{k} will be the set of all strings that take M from q_i to q_j with intermediate states going through q_1, q_2, \ldots or q_k only.

Example

$$R_{11}^{0} = \{\epsilon, 0\} = \epsilon + 0$$

$$R_{12}^{0} = \{1\} = 1$$

$$R_{22}^{0} = \{\epsilon, 1\} = \epsilon + 1$$

$$R_{11}^{1} = \{\epsilon, 0, 00, 000, ...\} = 0*$$

$$R_{12}^{1} = \{1, 01, 001, 0001, ...\} = 0*1$$

General construction

We inductively define R_{ij}^{k} as:

 $R_{ii}^{0} = a_{i_1} + a_{i_2} + \dots + a_{i_t} + \varepsilon$

(all loops around q_i and ϵ)

$$q_i$$
 $a_{i_1}, a_{i_2}, \dots, a_{i_t}$

$$R_{ij}^{0} = a_{i_1} + a_{i_2} + \dots + a_{i_t}$$
 if $i \neq j$

(all $q_i \rightarrow q_j$)

$$q_i$$
 $a_{i_1}, a_{i_2}, \dots, a_{i_t}$ q_j

 $R_{ij}^{\ k} = R_{ij}^{\ k-1} + R_{ik}^{\ k-1} (R_{kk}^{\ k-1})^* R_{kj}^{\ k-1}$ (for k > 0)

Informal proof of correctness Each execution of the DFA using states q_1 , q_2 , ... q_k will look like this:

Final step

Suppose the DFA start state is q_1 , and the accepting states are $F = \{q_{j_1} \cup q_{j_2} \dots \cup q_{j_t}\}$

Then the regular expression for this DFA is

$$R_{1j_1}^{n} + R_{1j_2}^{n} + \dots + R_{1j_t}^{n}$$

All models are equivalent

A language is regular iff it is accepted by a DFA, NFA, ε NFA, or regular expression

Example

Give a RE for the following DFA using this method:

$$(0 + 1)*0 + \varepsilon$$

2.2 Finite-State Automata

- An RE is one way of describing a FSA.
- An RE is one way of characterizing a particular kind of formal language called a regular language.

2.2 Finite-State Automata Using an FSA to Recognize Sheeptalk

	Ŀ	Input		
State	b	а	!	
0	1	Ø	Ø	
1	Ø	2	Ø	
2	0	3	Ø	
3	0	3	4	
4:	Ø	Ø	Ø	

The transition-state table

- Automaton (finite automaton, finite-state automaton (FSA))
- State, start state, final state (accepting state)

2.2 Finite-State Automata Using an FSA to Recognize Sheeptalk

- A finite automaton is formally defined by the following five parameters:
 - Q: a finite set of N states $q_0, q_1, ..., q_N$
 - Σ : a finite input alphabet of symbols
 - q_0 : the start state
 - F: the set of final states, $F \subseteq Q$
 - $\delta(q,i)$: the transition function or transition matrix between states. Given a state $q \in Q$ and input symbol $i \in \Sigma$, $\delta(q,i)$ returns a new state $q' \in Q$. δ is thus a relation from $Q \times \Sigma$ to Q;

2.2 Finite-State Automata Using an FSA to Recognize Sheeptalk

• An algorithm for deterministic recognition of FSAs.

2.2 Finite-State Automata

Formal Languages

- Key concept #1: Formal Language: A model which can both generate and recognize all and only the strings of a formal language acts as a *definition* of the formal language.
- A **formal language** is a set of strings, each string composed of symbols from a finite symbol-set call an **alphabet**.
- The usefulness of an automaton for defining a language is that it can express an infinite set in a closed form.
- A formal language may bear no resemblance at all to a real language (natural language), but
 - We often use a formal language to model part of a natural language, such as parts of the phonology, morphology, or syntax.
- The term **generative grammar** is used in linguistics to mean a grammar of a formal language.

2.2 Finite-State Automata Another Example

2.2 Finite-State Automata Non-Deterministic FSAs

2.2 Finite-State Automata Using an NFSA to Accept Strings

- Solutions to the problem of multiple choices in an NFSA
 - Backup
 - Look-ahead
 - Parallelism

		Input			
State	b b	а	ļ	3	
0	1	Ø	0	Ø	
1	0	2	0	Ø	
2	Ø	2,3	\emptyset	0	
3	Ø	Ø	4	Ø	
4:	0	Ø	0	Ø	

Finite-State Automata Using an NFSA to Accept Strings

function ND-RECOGNIZE(tape, machine) returns accept or reject

 $agenda \leftarrow \{(\text{Initial state of machine, beginning of tape})\}$ $current-search-state \leftarrow \text{NEXT}(agenda)$

loop

if ACCEPT-STATE?(current-search-state) returns true then
 return accept

else

agenda ← agenda ∪ GENERATE-NEW-STATES(current-search-state) if agenda is empty then

return reject

else

 $current-search-state \leftarrow NEXT(agenda)$

end

function GENERATE-NEW-STATES(current-state) returns a set of searchstates

current-node \leftarrow the node the current search-state is in *index* \leftarrow the point on the tape the current search-state is looking at **return** a list of search states from transition table as follows: (*transition-table[current-node,* ε], *index*)

ù

(transition-table[current-node, tape[index]], index + 1)

function ACCEPT-STATE?(search-state) returns true or false

current-node ← the node search-state is in *index* ← the point on the tape search-state is looking at **if** *index* is at the end of the tape **and** *current-node* is an accept state of machine **then**

return true

else

return false

2.2 Finite-State Automata Using an NFSA to Accept Strings

2.2 Finite-State Automata Recognition as Search

- Algorithms such as ND-RECOGNIZE are known as state-space search
- Depth-first search or Last In First
 Out (LIFO) strategy
- Breadth-first search or First In First Out (FIFO) strategy
- More complex search techniques such as dynamic programming or A*