
The Basics of Regular
Expressions

COSI 114 – Computational Linguistics
James Pustejovsky

January 13, 2015
Brandeis University

2

Regular Expressions

�  In computer science, RE is a language used
for specifying text search strings.

� A regular expression is a formula in a special
language that is used for specifying a simple
class of string.

�  Formally, a regular expression is an algebraic
notation for characterizing a set of strings.

�  RE search requires
◦  a pattern that we want to search for, and
◦  a corpus of texts to search through.

3

Regular Expressions

� A RE search function will search through
the corpus returning all texts that contain
the pattern.
◦  In a Web search engine, they might be the

entire documents or Web pages.
◦  In a word-processor, they might be individual

words, or lines of a document. (We take this
paradigm.)
�  E.g., the UNIX grep command

4

Regular Expressions
Basic Regular Expression Patterns

�  The use of the brackets [] to specify a disjunction of characters.

•  The use of the brackets [] plus the dash - to specify a range.

5

Regular Expressions
Basic Regular Expression Patterns

�  Uses of the caret ^ for negation or just to mean ^

•  The question-mark ? marks optionality of the previous expression.

•  The use of period . to specify any character

6

Regular Expressions
Disjunction, Grouping, and Precedence

� Operator precedence hierarchy

/cat|dog

()
+ ? { }
the ^my end$
|

•  Disjunction

/gupp(y|ies)

•  Precedence

7

Regular Expressions
A Simple Example

�  To find the English article the
/the/

/[tT]he/

/\b[tT]he\b/

/[^a-zA-Z][tT]he[^a-zA-Z]/

/^|[^a-zA-Z][tT]he[^a-zA-Z]/

8

 Regular Expressions
A More Complex Example

�  “any PC with more than 500 MHz and 32 Gb of disk space for less than $1000”

/$[0-9]+/

/$[0-9]+\.[0-9][0-9]/

/\b$[0-9]+(\.[0-9][0-9])?\b/

/\b[0-9]+ *(MHz|[Mm]egahertz|GHz|[Gg]igahertz)\b/

/\b[0-9]+ *(Mb|[Mm]egabytes?)\b/

/\b[0-9](\.[0-9]+)? *(Gb|[Gg]igabytes?)\b/

/\b(Win95|Win98|WinNT|Windows *(NT|95|98|2000)?)\b/

/\b(Mac|Macintosh|Apple)\b/

9

Regular Expressions
Advanced Operators

Aliases for common sets of characters

10

Regular Expressions
Advanced Operators

Regular expression operators for counting

11

Regular Expressions
Advanced Operators

Some characters that need to be backslashed

12

Regular Expressions
Regular Expression Substitution, Memory, and ELIZA

�  E.g. the 35 boxes → the <35> boxes
s/regexp1/regexp2/

s/([0-9]+)/<\1>/

•  The following pattern matches “The bigger they were, the bigger they will
be”, not “The bigger they were, the faster they will be”
/the (.*)er they were, the\1er they will be/

•  The following pattern matches “The bigger they were, the bigger they
were”, not “The bigger they were, the bigger they will be”
/the (.*)er they (.*), the\1er they \2/

registers

13

Regular Expressions
Regular Expressions Substitution, Memory, and ELIZA

�  Eliza worked by having a cascade of regular expression substitutions
that each match some part of the input lines and changed them
◦  my → YOUR, I’m → YOU ARE …

User1: Men are all alike.
ELIZA1: IN WHAT WAY
User2: They’re always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE
User3: Well, my boyfriend made me come here.
ELIZA3: YOUR BOYBRIEND MADE YOU COME HERE
User4: He says I’m depressed much of the time.
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED

s/.* YOU ARE (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/

s/.* YOU ARE (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/

s/.* all .*/IN WHAT WAY/

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

Operations on strings
� Given two strings s = a1…an and t = b1…bm,

we define their concatenation st = a1…anb1…
bm

� We define sn as the concatenation ss…s n times

s = abb, t = cba st = abbcba

s = 011 s3 = 011011011

Operations on languages
� The concatenation of languages L1 and L2 is

�  Similarly, we write Ln for LL…L (n times)
� The union of languages L1 ∪ L2 is the set of all

strings that are in L1 or in L2

� Example: L1 = {01, 0}, L2 = {ε, 1, 11, 111, …}.
What is L1L2 and L1 ∪ L2?

L1L2 = {st: s ∈ L1, t ∈ L2}

Operations on languages
� The star (Kleene closure) of L are all

strings made up of zero or more chunks
from L:

◦ This is always infinite, and always contains ε

� Example: L1 = {01, 0}, L2 = {ε, 1, 11, 111,
…}.
What is L1

* and L2
*?

L* = L0 ∪ L1 ∪ L2 ∪ …

Constructing languages with
operations

� Let’s fix an alphabet, say Σ = {0, 1}
� We can construct languages by starting with

simple ones, like {0}, {1} and combining them

{0}({0}∪{1})*
all strings that start with 0

({0}{1}*)∪({1}{0}*)

0(0+1)*

01*+10*

Regular expressions
� A regular expression over Σ is an expression

formed using the following rules:
◦  The symbol ∅ is a regular expression
◦  The symbol ε is a regular expression
◦  For every a ∈ Σ, the symbol a is a regular expression
◦  If R and S are regular expressions, so are RS, R+S and

R*.

� Definition of regular language

A language is regular if it is represented by a
regular expression

Examples
1.  01* = {0, 01, 011, 0111, …..}
2.  (01*)(01) = {001, 0101, 01101, 011101, …..}
3.  (0+1)*

4.  (0+1)*01(0+1)*

5.  ((0+1)(0+1)+(0+1)(0+1)(0+1))*
6.  ((0+1)(0+1))*+((0+1)(0+1)(0+1))*
7.  (1+01+001)*(ε+0+00)

Examples
� Construct a RE over Σ = {0,1} that

represents
◦ All strings that have two consecutive 0s.

◦ All strings except those with two consecutive
0s.

◦ All strings with an even number of 0s.

(0+1)*00(0+1)*

(1*01)*1* + (1*01)*1*0

(1*01*01*)*

Main theorem for regular languages
� Theorem

A language is regular if and only if it is the
language of some DFA

DFA NFA
regular

expression

regular languages

Proof plan

�  For every regular expression, we have to
give a DFA for the same language

�  For every DFA, we give a regular
expression for the same language

εNFA
regular

expression NFA DFA

What is an εNFA?

� An εNFA is an extension of NFA where some
transitions can be labeled by ε
◦  Formally, the transition function of an εNFA is a

function
δ: Q × (Σ ∪ {ε}) → subsets of Q

�  The automaton is allowed to follow ε-transitions
without consuming an input symbol

Example of εNFA

q0 q1 q2
ε,b

a

a

ε
Σ = {a, b}

� Which of the following is accepted by this
εNFA:
◦  aab, bab, ab, bb, a, ε

M2

Examples: regular expression →
εNFA

� R1 = 0

� R2 = 0 + 1

� R3 = (0 + 1)*

q0 q1
0

q0 q1

ε

εε

ε
q2 q3

0

q4 q5
1

q’0 q’1
εM2

ε

ε

ε

General method
regular expr εNFA

∅ q0

ε
q0

symbol a q0 q1
a

RS q0 q1
εMR MS

εε

Convention
� When we draw a box around an εNFA:
◦  The arrow going in points to the start state
◦  The arrow going out represents all transitions going out

of accepting states
◦ None of the states inside the box is accepting
◦  The labels of the states inside the box are distinct from

all other states in the diagram

General method continued
regular expr εNFA

R + S q0 q1

εMR

MS
εε

ε

R* q0 q1
εMR

ε

ε

ε

Road map

εNFA

regular
expression

NFA

DFA

ü ü

Example of εNFA to NFA
conversion

q0 q1 q2
ε,b

a

a

ε
εNFA:

Transition table of corresponding NFA:

st
at

es

inputs
a b

q0

q1

q2

{q1, q2} {q0, q1, q2}

{q0, q1, q2}

∅

∅

∅

Accepting states of NFA: {q0, q1, q2}

Example of εNFA to NFA
conversion

q0 q1 q2
ε,b

a

a

ε
εNFA:

NFA: q0 q1 q2
a, b

a

a

a

a, b

a

General method

� To convert an εNFA to an NFA:
◦  States stay the same
◦  Start state stays the same
◦ The NFA has a transition from qi to qj labeled

a iff the εNFA has a path from qi to qj that
contains one transition labeled a and all other
transitions labeled ε
◦ The accepting states of the NFA are all states

that can reach some accepting state of εNFA
using only ε-transitions

Why the conversion works
   In the original ε-NFA, when given input a1a2…an the

automaton goes through a sequence of states:
   q0 → q1→ q2 → … → qm

   Some ε-transitions may be in the sequence:
   q0 → ... → qi1

→ ... → qi2
 → … → qin

   In the new NFA, each sequence of states of the
form:

   qik
→ ... → qik+1

   will be represented by a single transition
   qik

→ qik+1
 because of the way we construct the

NFA.

ε ε ε ε ε εa1 a2

ε εak+1

ak+1

Proof that the conversion works

� More formally, we have the following
invariant for any k ≥ 1:

� We prove this by induction on k
� When k = 0, the εNFA can be in more

states, while the NFA must be in q0

After reading k input symbols, the set of
states that the εNFA and NFA can be in are
exactly the same

Proof that the conversion works
� When k ≥ 1 (input is not the empty string)
◦  If εNFA is in an accepting state, so is NFA
◦  Conversely, if NFA is an accepting state qi, then

some accepting state of εNFA is reachable from
qi, so εNFA accepts also

� When k = 0 (input is the empty string)
◦  The εNFA accepts iff one of its accepting states is

reachable from q0

◦  This is true iff q0 is an accepting state of the NFA

From DFA to regular expressions

εNFA

regular
expression

NFA

DFA

ü ü ü

Example
� Construct a regular expression for this DFA:

1

1

0

0

q1 q2

(0 + 1)*0 + ε

General method
� We have a DFA M with states q1, q2,… qn

� We will inductively define regular expressions Rij
k

Rij
k will be the set of all strings that take M from qi to qj with

intermediate states going through
q1, q2,… or qk only.

Example

1

1

0

0

q1 q2

  R11
0 = {ε, 0} = ε + 0

  R12
0 = {1} = 1

  R22
0 = {ε, 1} = ε + 1

  R11
1 = {ε, 0, 00, 000, ...}= 0*

  R12
1 = {1, 01, 001, 0001, ...}= 0*1

General construction
� We inductively define Rij

k as:
Rii

0 = ai1
+ ai2

+ … + ait
 + ε

(all loops around qi and ε)

(all qi → qj)

Rij
k = Rij

k-1 + Rik
k-1(Rkk

k-1)*Rkj
k-1

a path in M
qi

qk

qj

Rij
0 = ai1

+ ai2
+ … + ait

if i ≠ j

ai1
,ai2

,…,ait
 qi

qi qj
ai1

,ai2
,…,ait

(for k > 0)

Informal proof of correctness
� Each execution of the DFA using states q1, q2,

… qk will look like this:

qi → … → qk → … → qk → … → qk → … → qj

intermediate parts use
only states q1, q2,… qk-1

Rik
k-1 (Rkk

k-1)* Rkj
k-1 Rij

k-1 +

state qk is
never visited

or

Final step
�  Suppose the DFA start state is q1, and the

accepting states are F = {qj1
∪ qj2

 … ∪ qjt
}

� Then the regular expression for this DFA is

R1j1
n + R1j2

n + ….. + R1jt
n

All models are equivalent

εNFA

regular
expression

NFA

DFA

ü ü ü

ü

A language is regular iff it is accepted by a
DFA, NFA, εNFA, or regular expression

Example
�  Give a RE for the following DFA using this method:

1

1

0

0

q0 q1

(0 + 1)*0 + ε

45

2.2 Finite-State Automata

�  An RE is one way of describing a FSA.
�  An RE is one way of characterizing a particular

kind of formal language called a regular
language.

46

2.2 Finite-State Automata
Using an FSA to Recognize Sheeptalk

•  Automaton (finite automaton, finite-state automaton (FSA))
•  State, start state, final state (accepting state)

/baa+!/

A tape with cells
The transition-state table

47

2.2 Finite-State Automata
Using an FSA to Recognize Sheeptalk

� A finite automaton is formally defined by
the following five parameters:
◦ Q: a finite set of N states q0, q1, …, qN
◦ Σ: a finite input alphabet of symbols
◦  q0: the start state
◦  F: the set of final states, F ⊆ Q
◦  δ(q,i): the transition function or transition

matrix between states. Given a state q ∈ Q
and input symbol i ∈ Σ, δ(q,i) returns a new
state q’ ∈ Q. δ is thus a relation from Q × Σ
to Q;

48

2.2 Finite-State Automata
Using an FSA to Recognize Sheeptalk

�  An algorithm for deterministic recognition of FSAs.

49

2.2 Finite-State Automata
Formal Languages
�  Key concept #1: Formal Language: A model which can

both generate and recognize all and only the strings of a
formal language acts as a definition of the formal language.

�  A formal language is a set of strings, each string composed
of symbols from a finite symbol-set call an alphabet.

�  The usefulness of an automaton for defining a language is that
it can express an infinite set in a closed form.

�  A formal language may bear no resemblance at all to a real
language (natural language), but
◦  We often use a formal language to model part of a natural

language, such as parts of the phonology, morphology, or syntax.
�  The term generative grammar is used in linguistics to

mean a grammar of a formal language.

50

2.2 Finite-State Automata
Another Example

An FSA for the words of English numbers 1-99

FSA for the simple dollars and cents

51

2.2 Finite-State Automata
Non-Deterministic FSAs

52

2.2 Finite-State Automata
Using an NFSA to Accept Strings

�  Solutions to the problem of
multiple choices in an NFSA
◦  Backup
◦  Look-ahead

◦  Parallelism

53

 Finite-State
 Automata
 Using an NFSA to
 Accept Strings

54

2.2 Finite-State Automata
Using an NFSA to Accept Strings

55

2.2 Finite-State Automata
Recognition as Search

� Algorithms such as ND-RECOGNIZE are
known as state-space search

� Depth-first search or Last In First
Out (LIFO) strategy

� Breadth-first search or First In First
Out (FIFO) strategy

� More complex search techniques such as
dynamic programming or A*

