
The Basics of Regular 
Expressions 

COSI 114 – Computational Linguistics 
James Pustejovsky 
 
January 13, 2015 
Brandeis University 



2 

Regular Expressions 

�  In computer science, RE is a language used 
for specifying text search strings. 

� A regular expression is a formula in a special 
language that is used for specifying a simple 
class of string. 

�  Formally, a regular expression is an algebraic 
notation for characterizing a set of strings. 

�  RE search requires  
◦  a pattern that we want to search for, and  
◦  a corpus of texts to search through.  
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Regular Expressions 

� A RE search function will search through 
the corpus returning all texts that contain 
the pattern. 
◦  In a Web search engine, they might be the 

entire documents or Web pages. 
◦  In a word-processor, they might be individual 

words, or lines of a document. (We take this 
paradigm.) 
�  E.g., the UNIX grep command 
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Regular Expressions 
Basic Regular Expression Patterns 

�  The use of the brackets [] to specify a disjunction of characters. 

•  The use of the brackets [] plus the dash - to specify a range. 



5 

Regular Expressions 
Basic Regular Expression Patterns 

�  Uses of the caret ^  for negation or just to mean ^ 

•  The question-mark ? marks optionality of the previous expression. 

•  The use of period . to specify any character 



6 

Regular Expressions 
Disjunction, Grouping, and Precedence 

� Operator precedence hierarchy 

/cat|dog 

() 
+ ? { } 
the  ^my  end$ 
| 

•  Disjunction 

/gupp(y|ies) 

•  Precedence 
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Regular Expressions 
A Simple Example 

�  To find the English article the 
/the/ 

/[tT]he/ 

/\b[tT]he\b/ 

/[^a-zA-Z][tT]he[^a-zA-Z]/ 

/^|[^a-zA-Z][tT]he[^a-zA-Z]/ 
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 Regular Expressions 
A More Complex Example 

�  “any PC with more than 500 MHz and 32 Gb of disk space for less than $1000” 

/$[0-9]+/ 

/$[0-9]+\.[0-9][0-9]/ 

/\b$[0-9]+(\.[0-9][0-9])?\b/ 

/\b[0-9]+ *(MHz|[Mm]egahertz|GHz|[Gg]igahertz)\b/ 

/\b[0-9]+ *(Mb|[Mm]egabytes?)\b/ 

/\b[0-9](\.[0-9]+)? *(Gb|[Gg]igabytes?)\b/ 

/\b(Win95|Win98|WinNT|Windows *(NT|95|98|2000)?)\b/ 

/\b(Mac|Macintosh|Apple)\b/ 
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Regular Expressions 
Advanced Operators 

Aliases for common sets of characters 
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Regular Expressions 
Advanced Operators 

Regular expression operators for counting 
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Regular Expressions 
Advanced Operators 

Some characters that need to be backslashed 
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Regular Expressions 
Regular Expression Substitution, Memory, and ELIZA 

�  E.g. the 35 boxes → the <35> boxes 
s/regexp1/regexp2/ 

s/([0-9]+)/<\1>/ 

•  The following pattern matches “The bigger they were, the bigger they will 
be”, not “The bigger they were, the faster they will be” 
/the (.*)er they were, the\1er they will be/ 

•  The following pattern matches “The bigger they were, the bigger they 
were”, not “The bigger they were, the bigger they will be” 
/the (.*)er they (.*), the\1er they \2/ 

registers 
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Regular Expressions 
Regular Expressions Substitution, Memory, and ELIZA 

�  Eliza worked by having a cascade of regular expression substitutions 
that each match some part of the input lines and changed them 
◦  my → YOUR, I’m → YOU ARE … 

User1: Men are all alike. 
ELIZA1: IN WHAT WAY 
User2: They’re always bugging us about something or other. 
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE 
User3: Well, my boyfriend made me come here. 
ELIZA3: YOUR BOYBRIEND MADE YOU COME HERE 
User4: He says I’m depressed much of the time. 
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED 

s/.* YOU ARE (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/ 

s/.* YOU ARE (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/ 

s/.* all .*/IN WHAT WAY/ 

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/ 



Operations on strings 
� Given two strings s = a1…an and t = b1…bm, 

we define their concatenation st = a1…anb1…
bm 

� We define sn as the concatenation ss…s n times 

s = abb, t = cba  st = abbcba 

s = 011   s3 = 011011011 



Operations on languages 
� The concatenation of languages L1 and L2 is 

�  Similarly, we write Ln for LL…L (n times) 
� The union of languages L1 ∪ L2 is the set of all 

strings that are in L1 or in L2 

� Example: L1 = {01, 0}, L2 = {ε, 1, 11, 111, …}.  
What is L1L2  and L1 ∪ L2? 

L1L2 = {st: s ∈ L1, t ∈ L2} 



Operations on languages 
� The star (Kleene closure) of L are all 

strings made up of zero or more chunks 
from L: 

◦ This is always infinite, and always contains ε

� Example: L1 = {01, 0}, L2 = {ε, 1, 11, 111, 
…}.  
What is L1

* and L2
*?   

L* = L0 ∪ L1 ∪ L2 ∪ … 



Constructing languages with 
operations 

� Let’s fix an alphabet, say Σ = {0, 1} 
� We can construct languages by starting with 

simple ones, like {0}, {1} and combining them 

{0}({0}∪{1})* 
all strings that start with 0 

({0}{1}*)∪({1}{0}*) 

0(0+1)* 

01*+10* 



Regular expressions 
� A regular expression over Σ is an expression 

formed using the following rules: 
◦  The symbol ∅ is a regular expression 
◦  The symbol ε is a regular expression 
◦  For every a ∈ Σ, the symbol a is a regular expression 
◦  If R and S are regular expressions, so are RS, R+S and 

R*. 

� Definition of regular language 

A language is regular if it is represented by a 
regular expression 



Examples 
1.  01* = {0, 01, 011, 0111, …..} 
2.  (01*)(01) = {001, 0101, 01101, 011101, …..} 
3.  (0+1)* 

4.  (0+1)*01(0+1)* 

5.  ((0+1)(0+1)+(0+1)(0+1)(0+1))* 
6.  ((0+1)(0+1))*+((0+1)(0+1)(0+1))* 
7.  (1+01+001)*(ε+0+00) 



Examples 
� Construct a RE over Σ = {0,1} that 

represents 
◦ All strings that have two consecutive 0s. 

◦ All strings except those with two consecutive 
0s. 

◦ All strings with an even number of 0s. 

(0+1)*00(0+1)* 

(1*01)*1* + (1*01)*1*0  

(1*01*01*)* 



Main theorem for regular languages 
� Theorem 

A language is regular if and only if it is the 
language of some DFA 

DFA NFA 
regular 

expression 

regular languages 



Proof plan 

�  For every regular expression, we have to 
give a DFA for the same language 

�  For every DFA, we give a regular 
expression for the same language 

εNFA 
regular 

expression NFA DFA 



What is an εNFA? 

� An εNFA is an extension of NFA where some 
transitions can be labeled by ε
◦  Formally, the transition function of an εNFA is a 

function 
δ: Q × ( Σ ∪ {ε}) → subsets of  Q  

�  The automaton is allowed to follow ε-transitions 
without consuming an input symbol 



Example of εNFA 

q0 q1 q2 
ε,b 

a 

a 

ε

Σ = {a, b}  

� Which of the following is accepted by this 
εNFA: 
◦  aab, bab, ab, bb, a, ε



M2 

Examples: regular expression → 
εNFA 

� R1 = 0 

� R2 = 0 + 1 

� R3 = (0 + 1)* 

q0 q1 
0 

q0 q1 

ε


ε
ε


ε

q2 q3 

0 

q4 q5 
1 

q’0 q’1 
ε
M2 

ε


ε


ε




General method 
regular expr εNFA 

∅ q0 

ε
q0 

symbol a q0 q1 
a 

RS q0 q1 
ε
MR MS 

ε
ε




Convention 
� When we draw a box around an εNFA: 
◦  The arrow going in points to the start state 
◦  The arrow going out represents all transitions going out 

of accepting states 
◦ None of the states inside the box is accepting 
◦  The labels of the states inside the box are distinct from 

all other states in the diagram 



General method continued 
regular expr εNFA 

R + S q0 q1 

ε
MR 

MS 
ε
ε


ε


R* q0 q1 
ε
MR 

ε


ε


ε




Road map 

εNFA 

regular 
expression 

NFA 

DFA 

ü ü 



Example of εNFA to NFA 
conversion 

q0 q1 q2 
ε,b 

a 

a 

ε

εNFA: 

Transition table of corresponding NFA: 

st
at

es
 

inputs 
a b 

q0 

q1 

q2 

{q1, q2} {q0, q1, q2} 

{q0, q1, q2} 

∅

∅

∅

Accepting states of NFA: {q0, q1, q2} 



Example of εNFA to NFA 
conversion 

q0 q1 q2 
ε,b 

a 

a 

ε

εNFA: 

NFA: q0 q1 q2 
a, b 

a 

a 

a 

a, b 

a 



General method 

� To convert an εNFA to an NFA: 
◦  States stay the same 
◦  Start state stays the same 
◦ The NFA has a transition from qi to qj labeled 

a iff the εNFA has a path from qi to qj that 
contains one transition labeled a and all other 
transitions labeled ε  
◦ The accepting states of the NFA are all states 

that can reach some accepting state of εNFA 
using only ε-transitions 



Why the conversion works 
   In the original ε-NFA, when given input a1a2…an the 

automaton goes through a sequence of states: 
   q0 → q1→ q2 → … → qm 

   Some ε-transitions may be in the sequence: 
   q0 → ... → qi1

→ ... → qi2
 → … → qin 

   In the new NFA, each sequence of states of the 
form: 

   qik
→ ... → qik+1 

   will be represented by a single transition  
   qik 

→  qik+1
 because of the way we construct the 

NFA. 

ε
 ε
 ε
 ε
 ε
 ε
a1 a2 

ε
 ε
ak+1 

ak+1 



Proof that the conversion works 

� More formally, we have the following 
invariant for any k ≥ 1: 

� We prove this by induction on k 
� When k = 0, the εNFA can be in more 

states, while the NFA must be in q0 

After reading k input symbols, the set of 
states that the εNFA and NFA can be in are 
exactly the same 



Proof that the conversion works 
� When k ≥ 1 (input is not the empty string) 
◦  If εNFA is in an accepting state, so is NFA 
◦  Conversely, if NFA is an accepting state qi, then 

some accepting state of εNFA is reachable from 
qi, so εNFA accepts also 

� When k = 0 (input is the empty string) 
◦  The εNFA accepts iff one of its accepting states is 

reachable from q0 

◦  This is true iff q0 is an accepting state of the NFA 



From DFA to regular expressions 

εNFA 

regular 
expression 

NFA 

DFA 

ü ü ü 



Example 
� Construct a regular expression for this DFA: 

1 

1 

0 

0 

q1 q2 

(0 + 1)*0 + ε



General method 
� We have a DFA M with states q1, q2,… qn 

� We will inductively define regular expressions Rij
k 

Rij
k will be the set of all strings that take M from qi to qj with 

intermediate states going through  
q1, q2,… or qk only. 



Example 

1 

1 

0 

0 

q1 q2 

  R11
0 = {ε, 0} = ε + 0  

  R12
0 = {1} = 1 

  R22
0 = {ε, 1} = ε + 1 

  R11
1 = {ε, 0, 00, 000, ...}= 0* 

  R12
1 = {1, 01, 001, 0001, ...}= 0*1 



General construction 
� We inductively define Rij

k as: 
Rii

0 = ai1 
+ ai2 

+ … + ait
 + ε

(all loops around qi and ε) 

(all qi → qj) 

Rij
k = Rij

k-1 + Rik
k-1(Rkk

k-1)*Rkj
k-1 

a path in M 
qi 

qk 

qj 

Rij
0 = ai1 

+ ai2 
+ … + ait     

if i ≠ j

ai1
,ai2

,…,ait
  qi 

qi qj 
ai1

,ai2
,…,ait

  

(for k > 0) 



Informal proof of correctness 
� Each execution of the DFA using states q1, q2,

… qk will look like this: 

qi → … → qk → … → qk → … → qk → … → qj 

intermediate parts use 
only states q1, q2,… qk-1  

Rik
k-1                            (Rkk

k-1)*                     Rkj
k-1 Rij

k-1     +  

state qk is  
never visited 

or 



Final step 
�  Suppose the DFA start state is q1, and the 

accepting states are F = {qj1
∪ qj2

 … ∪ qjt
} 

� Then the regular expression for this DFA is 

R1j1
n + R1j2

n + ….. + R1jt
n  



All models are equivalent 

εNFA 

regular 
expression 

NFA 

DFA 

ü ü ü 

ü 

A language is regular iff it is accepted by a 
DFA, NFA, εNFA, or regular expression 



Example 
�  Give a RE for the following DFA using this method: 

1 

1 

0 

0 

q0 q1 

(0 + 1)*0 + ε
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2.2 Finite-State Automata 

�  An RE is one way of describing a FSA. 
�  An RE is one way of characterizing a particular 

kind of formal language called a regular 
language. 
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2.2 Finite-State Automata 
Using an FSA to Recognize Sheeptalk 

•  Automaton (finite automaton, finite-state automaton (FSA)) 
•  State, start state, final state (accepting state) 

/baa+!/ 

A tape with cells 
The transition-state table 
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2.2 Finite-State Automata 
Using an FSA to Recognize Sheeptalk 

� A finite automaton is formally defined by 
the following five parameters: 
◦ Q: a finite set of N states q0, q1, …, qN 
◦ Σ: a finite input alphabet of symbols 
◦  q0: the start state 
◦  F: the set of final states, F ⊆ Q 
◦  δ(q,i): the transition function or transition 

matrix between states. Given a state q ∈ Q 
and input symbol i ∈ Σ, δ(q,i) returns a new 
state q’ ∈ Q. δ is thus a relation from Q × Σ 
to Q; 
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2.2 Finite-State Automata 
Using an FSA to Recognize Sheeptalk 

�  An algorithm for deterministic recognition of FSAs. 
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2.2 Finite-State Automata 
Formal Languages 
�  Key concept #1: Formal Language: A model which can 

both generate and recognize all and only the strings of a 
formal language acts as a definition of the formal language. 

�  A formal language is a set of strings, each string composed 
of symbols from a finite symbol-set call an alphabet. 

�  The usefulness of an automaton for defining a language is that 
it can express an infinite set in a closed form. 

�  A formal language may bear no resemblance at all to a real 
language (natural language), but 
◦  We often use a formal language to model part of a natural 

language, such as parts of the phonology, morphology, or syntax. 
�  The term generative grammar is used in linguistics to 

mean a grammar of a formal language. 
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2.2 Finite-State Automata 
Another Example 

An FSA for the words of English numbers 1-99 

FSA for the simple dollars and cents 
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2.2 Finite-State Automata 
Non-Deterministic FSAs 
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2.2 Finite-State Automata 
Using an NFSA to Accept Strings 

�  Solutions to the problem of 
multiple choices in an NFSA 
◦  Backup 
◦  Look-ahead 

◦  Parallelism 
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        Finite-State      
 Automata 
 Using an NFSA to 
 Accept Strings 
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2.2 Finite-State Automata 
Using an NFSA to Accept Strings 
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2.2 Finite-State Automata 
Recognition as Search 

� Algorithms such as ND-RECOGNIZE are 
known as state-space search 

� Depth-first search or Last In First 
Out (LIFO) strategy 

� Breadth-first search or First In First 
Out (FIFO) strategy 

� More complex search techniques such as 
dynamic programming or A* 


