

CS114: Semantic Roles

March 17, 2015

James Pustejovsky

Brandeis University

Thanks for Jurafsky & Martin & Prof. Meteer for additional slides

What are semantic roles and what is their history?

- A lot of forms of traditional grammar (Sanskrit, Japanese, ...) analyze in terms of a rich array of semantically potent case ending or particles
 - They're kind of like semantic roles
- The idea resurfaces in modern generative grammar in work of Charles ("Chuck") Fillmore, who calls them Case Roles (Fillmore, 1968, The Case for Case).
 - They're quickly renamed to other words, but various:
 - Semantic roles
 - Thematic roles
 - Theta roles
 - A predicate and its semantic roles are often taken together as an argument structure

Okay, but what are they?

- An event is expressed by a predicate and various other dependents
- The claim of a theory of semantic roles is that these other dependents can be usefully classified into a small set of semantically contentful classes
 - And that these classes are useful for explaining lots of things

Common semantic roles

- Agent: initiator or doer in the event
 - Sue killed the rat.
- Patient: affected entity in the event; undergoes the action
- Theme: object in the event undergoing a change of state or location, or of which location is predicated
 - The ice melted
- Experiencer: feels or perceive the event
 - Bill likes pizza.
- Stimulus: the thing that is felt or perceived

Common semantic roles

- Goal:
 - Bill ran to Copley Square.
- Recipient (may or may not be distinguished from Goal):
 - Bill gave the book to Mary.
- Benefactive (may be grouped with Recipient):
 - Bill cooked dinner for Mary.
- Source:
 - Bill took a pencil <u>from the pile</u>.
- Instrument:
 - Bill ate the burrito with a plastic spork.
- Location:
 - Bill sits <u>under the tree</u> on Wednesdays

Common semantic roles

Try for yourself!

- 1. The submarine sank a troop ship.
- 2. Doris hid the money in the flowerpot.
- 3. Emma noticed the stain.
- 4. We crossed the street.
- 5. The boys climbed the wall.
- 6. The chef cooked a great meal.
- 7. The computer pinpointed the error.
- 8. A mad bull damaged the fence on Jack's farm.
- 9. The company wrote me a letter.
- 10. Jack opened the lock with a paper clip.

Linking of thematic roles to syntactic positions

- John opened the door
- AGENT THEME
- The door was opened by John
- THEME AGENT
- The door opened
- THEME
- John opened the door with the key
- AGENT THEME INSTRUMENT

Deeper Semantics

- From the WSJ...
 - He melted her reserve with a husky-voiced paean to her eyes.
 - If we label the constituents He and her reserve as the Melter and Melted, then those labels lose any meaning they might have had.
 - If we make them Agent and Theme then we can do more inference.

Problems

- What exactly is a role?
- What's the right set of roles?
- Are such roles universals?
- Are these roles atomic?
 - I.e. Agents
 - Animate, Volitional, Direct causers, etc
- Can we automatically label syntactic constituents with thematic roles?

Syntactic Variations

Yesterday, Kristina hit Scott with a baseball

Scott was hit by Kristina yesterday with a baseball

Yesterday, Scott was hit with a baseball by Kristina

With a baseball, Kristina hit Scott yesterday

Yesterday Scott was hit by Kristina with a baseball

Kristina hit Scott with a baseball yesterday

Agent, hitter

Thing hit

Instrument

Temporal adjunct

Syntactic Variations (as trees)

Semantic Role Labeling – Giving Semantic Labels to Phrases

- [AGENT John] broke [THEME the window]
- [THEME The window] broke
- [AGENT Sotheby's] .. offered [RECIPIENT the Dorrance heirs]
 [THEME a money-back guarantee]
- [AGENT Sotheby's] offered [THEME a money-back guarantee] to [RECIPIENT the Dorrance heirs]
- [THEME a money-back guarantee] offered by [AGENT Sotheby's]
- [RECIPIENT the Dorrance heirs] will [ARM-NEG not]
 be offered [THEME a money-back guarantee]

Why is SRL Important – *Applications*

- Question Answering
 - Q: When was Napoleon defeated?
 - Look for: [PATIENT Napoleon] [PRED defeat-synset] [ARGM-TMP *ANS*]
- Machine Translation

```
English (SVO)

[AGENT The little boy]

[PRED kicked]

[THEME the red ball]

[ARGM-MNR hard]

Farsi (SOV)

[AGENT pesar koocholo] boy-little

[THEME toop germezi] ball-red

[ARGM-MNR moqtam] hard-adverb

[PRED zaad-e] hit-past
```

- Document Summarization
 - Predicates and Heads of Roles summarize content
- Information Extraction
 - SRL can be used to construct useful rules for IE

Application: Semantically precise

search

Query: afghans destroying opium poppies

Some History

- Minsky 74, Fillmore 1976: frames describe events or situations
 - Multiple participants, "props", and "conceptual roles"
- Levin 1993: verb class defined by sets of frames (meaningpreserving alternations) a verb appears in
 - {break,shatter,..}: Glass X's easily; John Xed the glass, ...
 - Cut is different: The window broke; *The window cut.
- FrameNet, late '90s: based on Levin's work: large corpus of sentences annotated with *frames*
- PropBank: addresses tragic flaw in FrameNet corpus

Alternations for verbs of contact:

conative:

Jean moved the table.

*Jean moved at the table.

body-part possessor ascension:

Janet broke Bill's finger.

*Janet broke Bill on the finger.

middle construction:

Bread cuts easily.
*Cats touch easily.

Verb Class

Alternation	Touch	Hit	Cut	Break
conative	N	Y	Y	N
body-part possessor ascension	Y	\mathbf{Y}	\mathbf{Y}	N
middle	N	N	Y	Y

Examples of verbs for each class:

Touch: kiss, sting, tickle
Hit: bash, hammer, tap
Cut: chip, hack, scratch
Break: hack, split, tear

Underlying
hypothesis: verbal
meaning
determines
syntactic
realizations

Beth Levin analyzed thousands of verbs and defined hundreds of classes.

Frames in FrameNet

frame(transportation)
frame_elements(MOVER(S), MEANS, PATH)
scene(MOVER(S) move along PATH by MEANS)
frame(DRIVING)
inherit(TRANSPORTATION)
frame_elements(DRIVER (=MOVER), VEHICLE
(=MEANS), $RIDER(S)$ $(=MOVER(S))$, $CARGO$
(=MOVER(S)))
scenes(DRIVER starts VEHICLE, DRIVER con-
trols vehicle, driver stops vehicle)
frame(RIDING_1)
inherit(TRANSPORTATION)
frame_elements(RIDER(S) (=MOVER(S)), VE-
HICLE (=MEANS))
scenes(RIDER enters VEHICLE,
VEHICLE carries RIDER along PATH,
RIDER leaves VEHICLE)

Figure 1: A subframe can inherit elements and semantics from its parent

[Baker, Fillmore, Lowe, 1998]

TEC	A LID I C DAG
FEG	Annotated Example from BNC
D	$[_D \text{ Kate}]$ drove $[_P \text{ home}]$ in a stu-
	por.
V, D	A pregnant woman lost her baby af-
	ter she fainted as she waited for a
	bus and fell into the path of $[V]$ a
	lorry] driven [$_D$ by her uncle].
D, P	And that was why $[D \ I]$ drove
	$[_P \text{ eastwards along Lake Geneva}].$
D, R, P	Now $[_D$ Van Cheele] was driving
	$[_R \text{ his guest}][_P \text{ back to the station}].$
D, V, P	$[_D$ Cumming] had a fascination with
	most forms of transport, driving
	[V] his Rolls at high speed $[P]$ around
	the streets of London].
D+R, P	$[_D$ We $]$ drive $[_P$ home along miles
	of empty freeway].
V, P	Over the next 4 days, $[_V$ the Rolls
	Royces] will drive [$_P$ down to Ply-
	mouth], following the route of the
	railway.

Figure 2: Examples of Frame Element Groups and Annotated Sentences

FrameNet [Fillmore et al. 01]

Methodology for FrameNet

- 1. Define a frame (eg DRIVING)
- 2. Find some sentences for that frame
- 3. Annotate them
- 4. If (remaining funding == 0) then exit; else goto step 1.
- Corpora
 - FrameNet I British National Corpus only
 - FrameNet II LDC North American Newswire corpora
- Size
 - >8,900 lexical units, >625 frames, >135,000 sentences

http://framenet.icsi.berkeley.edu

Annotations in PropBank

- Based on Penn TreeBank
- Goal is to annotate every tree systematically
 - so statistics in the corpus are meaningful
- Like FrameNet, based on Levin's verb classes (via VerbNet)
- Generally more data-driven & bottom up
 - No level of abstraction beyond verb senses
 - Annotate every verb you see, whether or not it seems to be part of a frame

Some verb senses and "framesets" for propbank

Frameset: decline.01 "go down incrementally"

Arg1: entity going down

Arg2: amount gone down by, EXT

Arg3: start point

Arg4: end point

Ex: ...[Arg1 its net income] declining [Arg2-EXT 42%] [Arg4 to \$121 million] [ArgM-TMP in the first 9 months of 1989]. (wsj_0067)

Frameset: decline.02 "demure, reject"

Arg0: agent

Arg1: rejected thing

Ex: $[Arg_0 A spokesman_i] declined [Arg_1 *trace*_i to elaborate] (wsj_0038)$

FrameNet vs PropBank -1

FRAMENET ANNOTATION:

[Buyer Chuck] bought [Goods a car] [Seller from Jerry] [Payment for \$1000].

[Seller Jerry] sold [Goods a car] [Buyer to Chuck] [Payment for \$1000].

PROPBANK ANNOTATION:

[Arg0 Chuck] bought [Arg1 a car] [Arg2 from Jerry] [Arg3 for \$1000].

[Arg0 Jerry] sold [Arg1 a car] [Arg2 to Chuck] [Arg3 for \$1000].

FrameNet vs PropBank -2

FRAMENET ANNOTATION:

[Goods A car] was bought [Buyer by Chuck].

[Goods A car] was sold [Buyer to Chuck] [Seller by Jerry].

[Buyer Chuck] was *sold* [Goods a car] [Seller by Jerry].

PROPBANK ANNOTATION:

[Arg1 A car] was *bought* [Arg0 by Chuck].

[A_{rg1} A car] was *sold* [A_{rg2} to Chuck] [A_{rg0} by Jerry].

[A_{rg2} Chuck] was sold [A_{rg1} a car] [A_{rg0} by Jerry].

roposition Bank (PropBank) [Palmer et al. 05]

- Transfer sentences to propositions
 - Kristina hit Scott → hit(Kristina, Scott)
- Penn TreeBank → PropBank
 - Add a semantic layer on Penn TreeBank
 - Define a set of semantic roles for each verb
 - Each verb's roles are numbered

```
...[A0 the company] to ... offer [A1 a 15% to 20% stake] [A2 to the public]
...[A0 Sotheby's] ... offered [A2 the Dorrance heirs] [A1 a money-back guarantee]
...[A1 an amendment] offered [A0 by Rep. Peter DeFazio] ...
...[A2 Subcontractors] will be offered [A1 a settlement] ...
```


Proposition Bank (PropBank) Define the Set of Semantic Roles

- It's difficult to define a general set of semantic roles for all types of predicates (verbs).
- PropBank defines semantic roles for each verb and sense in the frame files.
- The (core) arguments are labeled by numbers.
 - A0 Agent; A1 Patient or Theme
 - Other arguments no consistent generalizations
- Adjunct-like arguments universal to all verbs
 - AM-LOC, TMP, EXT, CAU, DIR, PNC, ADV, MNR, NEG, MOD, DIS

Proposition Bank (PropBank) Frame Files

hit.01 "strike"

❖ A0: agent, hitter; A1: thing hit;

A2: instrument, thing hit by or with

[A0 Kristina] hit [A1 Scott] [A2 with a baseball] yesterday.

AM-TMP *Time*

- look.02 "seeming"
 - ❖ A0: seemer; A1: seemed like; A2: seemed to

- deserve.01 "deserve"
 - ❖ A0: deserving entity; A1: thing deserved;

A2: in-exchange-for

It looked to her like [A0 he] deserved [A1 this].

Proposition:
A sentence and
a target verb

Proposition Bank (PropBank) Add a Semantic Layer

[AO Kristina] hit [A1 Scott] [A2 with a baseball] [AM-TMP yesterday].

Proposition Bank (PropBank) Add a Semantic Layer – Continued

[$_{A1}$ The worst thing about him] **said** [$_{A0}$ Kristina] [$_{C-A1}$ is his laziness].

Proposition Bank (PropBank) Final Notes

- Current release (Mar 4, 2005): Proposition Bank I
 - Verb Lexicon: 3,324 frame files
 - Annotation: ~113,000 propositions
 http://verbs.colorado.edu/~mpalmer/projects/ace.html
- Alternative format: CoNLL-04,05 shared task
 - Represented in table format
 - Has been used as standard data set for the shared tasks on semantic role labeling

http://www.lsi.upc.es/~srlconll/soft.html

- 1. faces ("the \$1.4B robot spacecraft", "a six-year journey to explore ...moons")
- 2. explore("the \$1.4B robot spacecraft", "Jupiter and its 16 known moons")

The	-	(AO*	(AO*
\$	-	*	*
1.4	-	*	*
billion	-	*	*
robot	-	*	*
spacecraft	-	*)	*)
faces	face	(V*)	*
a	-	(A1*	*
six-year	-	*	*
journey	-	*	*
to	-	*	*
explore	explore	*	(V*)
Jupiter	-	*	(A1*
and	-	*	*
its	-	*	*
16	-	*	*
known	-	*	*
moons	-	*)	*)
	-	*	*

1. lie(<mark>"he",...)</mark>

2. leak("he", "information obtained from ... he supervised")

- 3. obtain(X, "information", "from a wiretap he supervised")
- 4. supervise("he", "a wiretap")

He	-	(AO*)	(AO*)	*	*
is	-	*	*	*	*
also	-	*	*	*	*
accused	-	*	*	*	*
of	-	*	*	*	*
lying	lie	(V*)	*	*	*
under	-	(AM-LOC*	*	*	*
oath	-	*)	*	*	*
and	-	*	*	*	*
of	-	*	*	*	*
leaking	leak	*	(V*)	*	*
information	-	*	(A1*	(A1*)	*
obtained	obtain	*	*	(V*)	*
from	-	*	*	*	*
a	-	*	*	(A2 *	(A1*
wiretap	-	*	*	*	*)
he	-	*	*	*	(AO*)
supervised	supervise	*	*)	*)	(V*)
	-	*	*	*	*

Information Extraction versus Semantic Role Labeling

Characteristic	IE	SRL
Coverage	narrow	broad
Depth of semantics	shallow	shallow
Directly connected to application	sometimes	no

Evaluation Measures

Correct: [AO The queen] **broke** [A1 the window] [AM-TMP yesterday]

Guess: [A0 The queen] broke the [A1 window] [AM-LOC yesterday]

Correct	Guess
{The queen} →A0	{The queen} →A0
{the window} →A1	{window} →A1
{yesterday} ->AM-TMP	{yesterday} ->AM-LOC
all other → NONE	all other → NONE

- Precision , Recall, F-Measure $\{tp=1, fp=2, fn=2\}$ p=r=f=1/3
- Measures for subtasks
 - Identification (Precision, Recall, F-measure) $\{tp=2, fp=1, fn=1\}$ p=r=f=2/3
 - Classification (Accuracy) acc = .5 (labeling of correctly identified phrases)
 - Core arguments (Precision, Recall, F-measure) $\{tp=1,fp=1,fn=1\}$ p=r=f=1/2

Basic Architecture of a Generic SRL System

Annotations Used

NP

Scott

Yesterday, Kristina hit

joint scoring

with a baseball

- Syntactic Parsers
 - Collins', Charniak's (most systems)
 - CCG parses ([Gildea & Hockenmaier 03],[Pradhan et al. 05])
 - TAG parses ([Chen & Rambow 03])
- Shallow parsers

[$_{NP}$ Yesterday], [$_{NP}$ Kristina] [$_{NP}$ hit] [$_{NP}$ Scott] [$_{PP}$ with] [$_{NP}$ a baseball].

(v) hit (cause to move by striking)

WordNet hypernym

propel, impel (cause to move forward with force)

Labeling Parse Tree Nodes

- Given a parse tree t, label the nodes (phrases) in the tree with semantic labels
- To deal with discontiguous arguments
 - In a post-processing step, join some phrases using simple rules
 - Use a more powerful labeling _{She} scheme, i.e. C-A0 for continuation of A0

Another approach: labeling chunked sentences. Will not describe in this section.

Combining Identification and Classification Models

Gildea & Jurafsky (2002) Features

- Key early work
 - Future systems use these features as a baseline
- Constituent Independent
 - Target predicate (lemma)
 - Voice
 - Subcategorization
- Constituent Specific
 - Path
 - Position (*left, right*)
 - Phrase Type
 - Governing Category (S or VP)
 - Head Word

broke
active
VP→VBD NP
VBD↑VP↑S↓NP
left
NP
S
She

Performance with Baseline Features using the G&J Model

 Machine learning algorithm: interpolation of relative frequency estimates based on subsets of the 7 features introduced earlier

FrameNet Results

Propbank Results

Performance with Baseline Features using the G&J Model

- Better ML: $67.6 \rightarrow 80.8$ using SVMs [Pradhan et al. 04]).
- Content Word (different from head word)
- Head Word and Content Word POS tags
- NE labels (Organization, Location, etc.)
- Structural/lexical context (phrase/words around parse tree)
- Head of PP Parent
 - If the parent of a constituent is a PP, the identity of the preposition

Pradhan et al. (2004) Features

 More (31% error reduction from baseline due to these + Surdeanu et al. features)

Joint Scoring: Enforcing Hard Constraints

Constraint 1: Argument phrases do not overlap

By $[A_1]$ working $[A_1]$ hard $[A_2]$, he $[A_2]$ said, you can achieve a lot.

- Pradhan et al. (04) greedy search for a best set of non-overlapping arguments
- Toutanova et al. (05) exact search for the best set of nonoverlapping arguments (dynamic programming, linear in the size of the tree)
- Punyakanok et al. (05) exact search for best non-overlapping arguments using integer linear programming
- Other constraints ([Punyakanok et al. 04, 05])
 - no repeated core arguments (good heuristic)
 - phrases do not overlap the predicate
 - (more later)

Joint Scoring: Integrating Soft Preferences

• Gildea and Jurafsky (02) – a smoothed relative frequency estimate of the probability of frame element multi-sets:

$$P(\lbrace A0, AM_{TMP}, A1, AM_{TMP} \rbrace | hit)$$

- Gains relative to local model 59.2 → 62.9 FrameNet automatic parses
- Pradhan et al. (04) a language model on argument label sequences (with the predicate included)
 - Small gains relative to local model for a baseline system 88.0 → 88.9 on core arguments PropBank correct parses

$$P(A0, AM_{TMP}, hit, A1, AM_{TMP})$$

- Toutanova et al. (05) a joint model based on CRFs with a rich set of joint features of the sequence
 of labeled arguments (more later)
 - Gains relative to local model on PropBank correct parses 88.4 → 91.2 (24% error reduction); gains on automatic parses 78.2 → 80.0
- Also tree CRFs [Cohn & Brunson] have been used

Per Argument Performance

CoNLL-05 Results on WSJ-Test

 Core Arguments (Freq. ~70%)

		Best F ₁	Freq.
	A0	88.31	25.58%
	A1	79.91	35.36%
	A2	70.26	8.26%
1	A3	65.26	1.39%
	A4	77.25	1.09%

Arguments that need

to be improved

Adjuncts (Freq. ~30%)

	Best F ₁	Freq.	
TMP	78.21	6.86%	
ADV	59.73	3.46%	
DIS	80.45	2.05%	
MNR	59.22	2.67%	
LOC	60.99	2.48%	
MOD	98.47	3.83%	
CAU	64.62	0.50%	
NEG	98.91	1.36%	

Data from Carreras&Màrquez's slides (CoNLL 2005)