
Elements of Syntax

COSI 114 – Computational Linguistics
James Pustejovsky

February 27, 2015
Brandeis University

3/8/15 2

Verb Phrases
� English VPs consist of a head verb along

with 0 or more following constituents
which we’ll call arguments.

3/8/15 3

Subcategorization
�  Even though there are many valid VP

rules in English, not all verbs are allowed
to participate in all those VP rules.

� We can subcategorize the verbs in a
language according to the sets of VP
rules that they participate in.

�  This is just an elaboration on the
traditional notion of transitive/
intransitive.

� Modern grammars have many such
classes

3/8/15 4

Subcategorization
� Sneeze: John sneezed
� Find: Please find [a flight to NY]NP

� Give: Give [me]NP[a cheaper fare]NP

� Help: Can you help [me]NP[with a
flight]PP

� Prefer: I prefer [to leave earlier]TO-VP

� Told: I was told [United has a flight]S

� …

Programming Analogy
�  It may help to view things this way
◦ Verbs are functions or methods
◦ They participate in specify the number,

position, and type of the arguments they
take...
�  That is, just like the formal parameters to a

method.

3/8/15 5

3/8/15 6

Subcategorization
� *John sneezed the book
� *I prefer United has a flight
� *Give with a flight

� As with agreement phenomena, we
need a way to formally express these
facts

3/8/15 7

Why?
� Right now, the various rules for VPs

overgenerate.
◦ They permit the presence of strings containing

verbs and arguments that don’t go together
◦  For example
◦ VP -> V NP therefore
 Sneezed the book is a VP since “sneeze” is a
verb and “the book” is a valid NP

3/8/15 8

Possible CFG Solution
�  Possible solution for

agreement.
�  Can use the same

trick for all the verb/
VP classes.

�  SgS -> SgNP SgVP
�  PlS -> PlNp PlVP
�  SgNP -> SgDet

SgNom
�  PlNP -> PlDet PlNom
�  PlVP -> PlV NP
�  SgVP ->SgV Np
�  …

3/8/15 9

CFG Solution for Agreement

�  It works and stays within the power of
CFGs
◦ But it is a fairly ugly one

� And it doesn’t scale all that well
because of the interaction among the
various constraints explodes the
number of rules in our grammar.

3/8/15 10

Summary
�  CFGs appear to be just about what we need

to account for a lot of basic syntactic
structure in English.

�  But there are problems
◦  That can be dealt with adequately, although not

elegantly, by staying within the CFG framework.
�  There are simpler, more elegant, solutions

that take us out of the CFG framework
(beyond its formal power)
◦  LFG, HPSG, Construction grammar, XTAG, etc.
◦  Chapter 15 explores one approach (feature

unification) in more detail

3/8/15 11

Treebanks
�  Treebanks are corpora in which each

sentence has been paired with a parse
structure (presumably the correct one).

�  These are generally created
1.  By first parsing the collection with an automatic

parser
2.  And then having human annotators hand

correct each parse as necessary.
�  This generally requires detailed annotation

guidelines that provide a POS tagset, a
grammar, and instructions for how to deal
with particular grammatical constructions.

Parens and Trees

3/8/15 12

(S (NP (Pro I))
 (VP (Verb prefer)
 (NP (Det a)
 (Nom (Nom (Noun morning))
 (Noun flight)))))

3/8/15 13

Penn Treebank
� Penn TreeBank is a widely used treebank.

Most well known part is
the Wall Street Journal
section of the Penn
TreeBank.

§ 1 M words from the
1987-1989 Wall
Street Journal.

3/8/15 14

Treebank Grammars
�  Treebanks implicitly define a grammar

for the language covered in the
treebank.

�  Simply take the local rules that make up
the sub-trees in all the trees in the
collection and you have a grammar
◦  The WSJ section gives us about 12k rules if

you do this
� Not complete, but if you have decent

size corpus, you will have a grammar
with decent coverage.

3/8/15 15

Treebank Grammars
� Such grammars tend to be very flat due to

the fact that they tend to avoid recursion.
◦ To ease annotator’s burden, among things

� For example, the Penn Treebank has
~4500 different rules for VPs. Among
them...

3/8/15 16

Treebank Uses
� Treebanks (and head-finding) are

particularly critical to the development
of statistical parsers
◦ Chapter 14
�  We will get there

� Also valuable to Corpus Linguistics
◦  Investigating the empirical details of

various constructions in a given language
�  How often do people use various constructions

and in what contexts...
�  Do people ever say X ...

3/8/15 17

Head Finding
� Finding heads in treebank trees is a

task that arises frequently in many
applications.
◦ As we’ll see it is particularly important in

statistical parsing
� We can visualize this task by

annotating the nodes of a parse tree
with the heads of each corresponding
node.

3/8/15 18

Lexically Decorated Tree

3/8/15 19

Head Finding
� Given a tree, the standard way to do

head finding is to use a simple set of
tree traversal rules specific to each
non-terminal in the grammar.

3/8/15 20

Noun Phrases

3/8/15 21

Treebank Uses
� Treebanks (and head-finding) are

particularly critical to the development
of statistical parsers
◦ Chapter 14

� Also valuable to Corpus Linguistics
◦  Investigating the empirical details of

various constructions in a given language

3/8/15 22

Dependency Grammars
�  In CFG-style phrase-structure

grammars the main focus is on
constituents and ordering.

� But it turns out you can get a lot done
with just labeled relations among the
words in an utterance.

�  In a dependency grammar framework,
a parse is a tree where
◦  The nodes stand for the words in an utterance
◦  The links between the words represent

dependency relations between pairs of words.
�  Relations may be typed (labeled), or not.

3/8/15 23

Dependency Relations

3/8/15 24

Dependency Parse

3/8/15 25

Dependency Parsing
� The dependency approach has a number of

advantages over full phrase-structure
parsing.
◦  It deals well with free word order languages

where the constituent structure is quite fluid
◦  Parsing is much faster than with CFG-based

parsers
◦ Dependency structure often captures the

syntactic relations needed by later applications
�  CFG-based approaches often extract this same

information from trees anyway

3/8/15 26

Summary
�  Context-free grammars can be used to

model various facts about the syntax of a
language.

�  When paired with parsers, such grammars
consititute a critical component in many
applications.

�  Constituency is a key phenomena easily
captured with CFG rules.
◦  But agreement and subcategorization do pose

significant problems
�  Treebanks pair sentences in corpus with

their corresponding trees.

1.	 Phrase	 structure	
�  Phrase	 structure	 trees	 organize	
sentences	 into	 cons%tuents	 or	
brackets.	

�  Each	 cons3tuent	 gets	 a	 label.	

�  The	 cons3tuents	 are	 nested	 in	
a	 tree	 form.	

�  Linguists	 can	 and	 do	 argue	
about	 the	 details.	

�  Lots	 of	 ambiguity	 …	

Cons3tuency	 Tests	
•  How do we know what nodes go in the tree?

•  Classic constituency tests:
– Substitution by proform
– Question answers
– Semantic grounds

•  Coherence
•  Reference
•  Idioms

– Dislocation
– Conjunction

•  Cross-linguistic arguments

Conflic3ng	 Tests	
Cons3tuency	 isn’t	 always	 clear.	
	
�  Phonological	 Reduc3on:	
◦  I	 will	 go	 à	 I’ll	 go	
◦  I	 want	 to	 go	 à	 I	 wanna	 go	
◦  a	 le	 centre	 à	 au	 centre	

�  Coordina3on	
◦  He	 went	 to	 and	 came	 from	 the	 store.	

�  Write	 symbolic	 or	 logical	 rules:	

�  Use	 deduc3on	 systems	 to	 prove	 parses	 from	 words	
◦  Minimal	 grammar	 on	 “Fed”	 sentence:	 	 36	 parses	
◦  Simple,	 10-‐rule	 grammar:	 	 592	 parses	
◦  Real-‐size	 grammar:	 	 many	 millions	 of	 parses	
◦  With	 hand-‐built	 grammar,	 ~30%	 of	 sentences	 have	 no	 parse	

�  This	 scales	 very	 badly.	
◦  Hard	 to	 produce	 enough	 rules	 for	 every	 varia3on	 of	 language	 (coverage)	
◦  Many,	 many	 parses	 for	 each	 valid	 sentence	 (disambigua3on)	

Classical	 NLP:	 	 Parsing	

Ambiguity	 examples	

The	 bad	 effects	 of	 V/N	 ambigui3es	

Ambigui3es:	 	 PP	 A^achment	

A^achments	
�  I	 cleaned	 the	 dishes	 from	 dinner.	

�  I	 cleaned	 the	 dishes	 with	 detergent.	

�  I	 cleaned	 the	 dishes	 in	 my	 pajamas.	

�  I	 cleaned	 the	 dishes	 in	 the	 sink.	

Syntac3c	 Ambigui3es	 1	
�  Preposi3onal	 Phrases	

They	 cooked	 the	 beans	 in	 the	 pot	 on	 the	 stove	 with	 handles.	
	

�  Par3cle	 vs.	 Preposi3on	
The	 puppy	 tore	 up	 the	 staircase.	
	

�  Complement	 Structure	
The	 tourists	 objected	 to	 the	 guide	 that	 they	 couldn’t	 hear.	
She	 knows	 you	 like	 the	 back	 of	 her	 hand.	
	

�  Gerund	 vs.	 Par3cipial	 Adjec3ve	
Visi%ng	 rela%ves	 can	 be	 boring.	
Changing	 schedules	 frequently	 confused	 passengers.	

Syntac3c	 Ambigui3es	 2	
•  Modifier scope within NPs

impractical design requirements
plastic cup holder

•  Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

•  Coordination scope
Small rats and mice can squeeze into holes or cracks in

the wall.

Classical NLP Parsing:
The problem and its solution
•  Very constrained grammars attempt to limit unlikely/

weird parses for sentences
– But the attempt makes the grammars not robust: many

sentences have no parse

•  A less constrained grammar can parse more
sentences
– But simple sentences end up with ever more parses

•  Solution: We need mechanisms that allow us to find
the most likely parse(s)
–  Statistical parsing lets us work with very loose grammars

that admit millions of parses for sentences but to still
quickly find the best parse(s)

Polynomial-‐3me	 Parsing	 with	 	
Context	 Free	 Grammars	

Parsing	
Computa(onal	 task:	
Given	 a	 set	 of	 grammar	 rules	 and	 a	 sentence,	 find	

a	 valid	 parse	 of	 the	 sentence	 (efficiently)	
	
Naively,	 you	 could	 try	 all	 possible	 trees	 un3l	 you	

get	 to	 a	 parse	 tree	 that	 conforms	 to	 the	
grammar	 rules,	 that	 has	 “S”	 at	 the	 root,	 and	
that	 has	 the	 right	 words	 at	 the	 leaves.	 	 	

	
But	 that	 takes	 exponen(al	 (me	 in	 the	 number	 of	 words.	

39	

Aspects	 of	 parsing	
�  Running	 a	 grammar	 backwards	 to	 find	 possible	 structures	 for	 a	

sentence	

�  Parsing	 can	 be	 viewed	 as	 a	 search	 problem	

�  Parsing	 is	 a	 hidden	 data	 problem	

�  For	 the	 moment,	 we	 want	 to	 examine	 all	 structures	 for	 a	 string	 of	
words	

�  We	 can	 do	 this	 bo^om-‐up	 or	 top-‐down	
◦  This	 dis3nc3on	 is	 independent	 of	 depth-‐first	 or	 breadth-‐first	
search	 –	 we	 can	 do	 either	 both	 ways	
◦  We	 search	 by	 building	 a	 search	 tree	 which	 his	 dis3nct	 from	 the	
parse	 tree	

Human	 parsing	
�  Humans	 oeen	 do	 ambiguity	 maintenance	
◦  Have	 the	 police	 …	 eaten	 their	 supper?	
◦  	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 come	 in	 and	 look	 around.	
◦  	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 taken	 out	 and	 shot.	

�  But	 humans	 also	 commit	 early	 and	 are	
“garden	 pathed”:	
◦  The	 man	 who	 hunts	 ducks	 out	 on	 weekends.	
◦  The	 coCon	 shirts	 are	 made	 from	 grows	 in	
Mississippi.	
◦  The	 horse	 raced	 past	 the	 barn	 fell.	

A	 phrase	 structure	 grammar	

•  S → NP VP N → cats
•  VP → V NP N → claws
•  VP → V NP PP N → people
•  NP → NP PP N → scratch
•  NP → N V → scratch
•  NP → e P → with
•  NP → N N
•  PP → P NP

•  By convention, S is the start symbol, but in the PTB,
we have an extra node at the top (ROOT, TOP)

Phrase structure grammars =
context-free grammars
•  G = (T, N, S, R)

– T is set of terminals
– N is set of nonterminals

•  For NLP, we usually distinguish out a set P ⊂ N of
preterminals, which always rewrite as terminals

•  S is the start symbol (one of the nonterminals)
•  R is rules/productions of the form X → γ, where X

is a nonterminal and γ is a sequence of terminals
and nonterminals (possibly an empty sequence)

•  A grammar G generates a language L.

Probabilistic or stochastic context-
free grammars (PCFGs)
•  G = (T, N, S, R, P)

– T is set of terminals
– N is set of nonterminals

•  For NLP, we usually distinguish out a set P ⊂ N of
preterminals, which always rewrite as terminals

•  S is the start symbol (one of the nonterminals)
•  R is rules/productions of the form X → γ, where X is a

nonterminal and γ is a sequence of terminals and
nonterminals (possibly an empty sequence)

•  P(R) gives the probability of each rule.

•  A grammar G generates a language model L.

€

∀X ∈ N, P(X →γ) =1
X→γ ∈R
∑

Soundness	 and	 completeness	
�  A	 parser	 is	 sound	 if	 every	 parse	 it	 returns	 is	 valid/
correct	

�  A	 parser	 terminates	 if	 it	 is	 guaranteed	 to	 not	 go	 off	 into	
an	 infinite	 loop	

�  A	 parser	 is	 complete	 if	 for	 any	 given	 grammar	 and	
sentence,	 it	 is	 sound,	 produces	 every	 valid	 parse	 for	
that	 sentence,	 and	 terminates	

�  (For	 many	 purposes,	 we	 se^le	 for	 sound	 but	 incomplete	
parsers:	 e.g.,	 probabilis3c	 parsers	 that	 return	 a	 k-‐best	
list.)	

Top-‐down	 parsing	
•  Top-down parsing is goal directed

•  A top-down parser starts with a list of constituents
to be built. The top-down parser rewrites the goals in
the goal list by matching one against the LHS of the
grammar rules, and expanding it with the RHS,
attempting to match the sentence to be derived.

•  If a goal can be rewritten in several ways, then there is
a choice of which rule to apply (search problem)

•  Can use depth-first or breadth-first search, and goal
ordering.

Top-‐down	 parsing	

Problems	 with	 top-‐down	 parsing	
•  Left recursive rules

•  A top-down parser will do badly if there are many different rules for
the same LHS. Consider if there are 600 rules for S, 599 of which start
with NP, but one of which starts with V, and the sentence starts with V.

•  Useless work: expands things that are possible top-down but not there

•  Top-down parsers do well if there is useful grammar-driven control:
search is directed by the grammar

•  Top-down is hopeless for rewriting parts of speech (preterminals) with
words (terminals). In practice that is always done bottom-up as lexical
lookup.

•  Repeated work: anywhere there is common substructure

Repeated	 work…	

Bo^om-‐up	 parsing	
•  Bottom-up parsing is data directed

•  The initial goal list of a bottom-up parser is the string to be parsed. If a
sequence in the goal list matches the RHS of a rule, then this sequence
may be replaced by the LHS of the rule.

•  Parsing is finished when the goal list contains just the start category.

•  If the RHS of several rules match the goal list, then there is a choice of
which rule to apply (search problem)

•  Can use depth-first or breadth-first search, and goal ordering.

•  The standard presentation is as shift-reduce parsing.

Problems	 with	 bo^om-‐up	 parsing	
•  Unable to deal with empty categories: termination

problem, unless rewriting empties as constituents is
somehow restricted (but then it's generally
incomplete)

•  Useless work: locally possible, but globally impossible.

•  Inefficient when there is great lexical ambiguity
(grammar-driven control might help here)

•  Conversely, it is data-directed: it attempts to parse
the words that are there.

•  Repeated work: anywhere there is common
substructure

Chomsky	 Normal	 Form	

�  All	 rules	 are	 of	 the	 form	 X	 →	 Y	 Z	 or	 X	 →	 w.	
�  A	 transforma3on	 to	 this	 form	 doesn’t	 change	 the	
weak	 genera3ve	 capacity	 of	 CFGs.	
◦  With	 some	 extra	 book-‐keeping	 in	 symbol	 names,	 you	
can	 even	 reconstruct	 the	 same	 trees	 with	 a	
detransform	
◦  	 Unaries/emp3es	 are	 removed	 recursively	
◦  N-‐ary	 rules	 introduce	 new	 nonterminals:	

�  VP	 →	 V	 NP	 PP	 	 becomes	 	 VP	 →	 V	 @VP-‐V	 	 and	 	 @VP-‐V	 →	 NP	 PP	

�  In	 prac3ce	 it’s	 a	 pain	
◦  Reconstruc3ng	 n-‐aries	 is	 easy	
◦  Reconstruc3ng	 unaries	 can	 be	 trickier	

�  But	 it	 makes	 parsing	 easier/more	 efficient	

3/8/15 53

For Now
� Assume…
◦  You have all the words already in some buffer
◦ The input is not POS tagged prior to parsing
◦ We won’t worry about morphological analysis
◦ All the words are known
◦ These are all problematic in various ways, and

would have to be addressed in real
applications.

3/8/15 54

Top-Down Search
� Since we’re trying to find trees rooted

with an S (Sentences), why not start
with the rules that give us an S.

� Then we can work our way down from
there to the words.

3/8/15 55

Top Down Space

3/8/15 56

Bottom-Up Parsing
� Of course, we also want trees that

cover the input words. So we might
also start with trees that link up with
the words in the right way.

� Then work your way up from there to
larger and larger trees.

3/8/15 57

Bottom-Up Search

3/8/15 58

Bottom-Up Search

3/8/15 59

Bottom-Up Search

3/8/15 60

Bottom-Up Search

3/8/15 61

Bottom-Up Search

3/8/15 62

Top-Down and Bottom-Up
� Top-down
◦ Only searches for trees that can be

answers (i.e. S’s)
◦ But also suggests trees that are not

consistent with any of the words
� Bottom-up
◦ Only forms trees consistent with the

words
◦ But suggests trees that make no sense

globally

3/8/15 63

Control
� Of course, in both cases we left out

how to keep track of the search space
and how to make choices
◦ Which node to try to expand next
◦ Which grammar rule to use to expand a

node
� One approach is called backtracking.
◦ Make a choice, if it works out then fine
◦  If not then back up and make a different

choice

3/8/15 64

Problems
� Even with the best filtering, backtracking

methods are doomed because of two
inter-related problems
◦ Ambiguity and search control (choice)
◦  Shared subproblems

3/8/15 65

Ambiguity

3/8/15 66

Shared Sub-Problems
� No matter what kind of search (top-

down or bottom-up or mixed) that we
choose...
◦ We can’t afford to redo work we’ve

already done.
◦ Without some help naïve backtracking will

lead to such duplicated work.

3/8/15 67

Shared Sub-Problems
�  Consider
◦  A flight from Indianapolis

to Houston on TWA

3/8/15 68

Sample L1 Grammar

3/8/15

Shared Sub-Problems
�  Assume a top-down parse that has

already expanded the NP rule (dealing
with the Det)

� Now its making choices among the
various Nominal rules

�  In particular, between these two
◦  Nominal -> Noun
◦  Nominal -> Nominal PP

�  Statically choosing the rules in this order
leads to the following bad behavior...

3/8/15 70

Shared Sub-Problems

3/8/15 71

Shared Sub-Problems

3/8/15 72

Shared Sub-Problems

3/8/15 73

Shared Sub-Problems

3/8/15 74

Dynamic Programming
�  DP search methods fill tables with partial results

and thereby
◦  Avoid doing avoidable repeated work
◦  Solve exponential problems in polynomial time (well not

really)
◦  Efficiently store ambiguous structures with shared sub-

parts.
�  We’ll cover two approaches that roughly

correspond to top-down and bottom-up
approaches.
◦  CKY
◦  Earley

3/8/15 75

CKY Parsing

� First we’ll limit our grammar to epsilon-
free, binary rules (more on this later)

� Consider the rule A → BC
◦  If there is an A somewhere in the input

generated by this rule then there must be a
B followed by a C in the input.
◦  If the A spans from i to j in the input then

there must be some k st. i<k<j
�  In other words, the B splits from the C someplace

after the i and before the j.

3/8/15 76

CKY
� Build a table so that an A spanning

from i to j in the input is placed in cell
[i,j] in the table.
◦  So a non-terminal spanning an entire

string will sit in cell [0, n]
�  Hopefully it will be an S

� Now we know that the parts of the A
must go from i to k and from k to j,
for some k

3/8/15 77

CKY
� Meaning that for a rule like A → B C we

should look for a B in [i,k] and a C in
[k,j].

�  In other words, if we think there might
be an A spanning i,j in the input… AND

 A → B C is a rule in the grammar THEN
�  There must be a B in [i,k] and a C in

[k,j] for some k such that i<k<j

What about the B and the C?

3/8/15 78

CKY
� So to fill the table loop over the cells

[i,j] values in some systematic way
◦ Then for each cell, loop over the

appropriate k values to search for things
to add.
◦ Add all the derivations that are possible

for each [i,j] for each k

3/8/15 79

CKY Table

3/8/15 80

CKY Algorithm

What’s the complexity of this?

3/8/15 81

Example

3/8/15 82

Example

Filling column 5

Example

3/8/15 83

� Filling column 5 corresponds to processing
word 5, which is Houston.
◦  So j is 5.
◦  So i goes from 3 to 0 (3,2,1,0)

3/8/15 84

Example

3/8/15 85

Example

3/8/15 86

Example

3/8/15 87

Example

Example
� Since there’s an S in [0,5] we have a

valid parse.
� Are we done? We we sort of left

something out of the algorithm

3/8/15 88

3/8/15 89

CKY Notes
� Since it’s bottom up, CKY imagines a lot of

silly constituents.
◦  Segments that by themselves are constituents

but cannot really occur in the context in which
they are being suggested.
◦ To avoid this we can switch to a top-down

control strategy
◦ Or we can add some kind of filtering that

blocks constituents where they can not happen
in a final analysis.

3/8/15 90

CKY Notes
� We arranged the loops to fill the table

a column at a time, from left to right,
bottom to top.
◦ This assures us that whenever we’re filling

a cell, the parts needed to fill it are
already in the table (to the left and below)
◦  It’s somewhat natural in that it processes

the input a left to right a word at a time
�  Known as online

Earley Parsing

� Allows arbitrary CFGs
�  Where CKY is bottom-up, Earley is top-down
�  Fills a table in a single sweep over the

input words
◦ Table is length N+1; N is number of words
◦ Table entries represent
�  Completed constituents and their locations
�  In-progress constituents
�  Predicted constituents

Dynamic Programming

� A standard T-D parser would reanalyze A
FLIGHT 4 times, always in the same way

� A DYNAMIC PROGRAMMING algorithm
uses a table (the CHART) to avoid
repeating work

� The Earley algorithm also
◦ Does not suffer from the left-recursion

problem
◦  Solves an exponential problem in O(n3)

The Chart
�  The Earley algorithm uses a table (the CHART) of size

N+1, where N is the length of the input
◦  Table entries sit in the `gaps’ between words

�  Each entry in the chart is a list of
◦  Completed constituents
◦  In-progress constituents
◦  Predicted constituents

�  All three types of objects are represented in the same
way as STATES

THE CHART:
GRAPHICAL REPRESENTATION

States
� A state encodes two types of information:
◦ How much of a certain rule has been

encountered in the input
◦ Which positions are covered
◦ A à α, [X,Y]

� DOTTED RULES
◦ VP à V NP •
◦ NP à Det • Nominal
◦  S à • VP

Examples

Success

� The parser has succeeded if entry N+1 of
the chart contains the state
◦  S à α •, [0,N]

THE ALGORITHM

� The algorithm loops through the input
without backtracking, at each step
performing three operations:
◦  PREDICTOR: add predictions to the chart
◦ COMPLETER: Move the dot to the right when

looked-for constituent is found
◦  SCANNER: read in the next input word

THE ALGORITHM: CENTRAL LOOP

EARLEY ALGORITHM:
THE THREE OPERATORS

EXAMPLE, AGAIN

EXAMPLE:
BOOK THAT FLIGHT

EXAMPLE:
BOOK THAT FLIGHT (II)

EXAMPLE:
BOOK THAT FLIGHT (III)

EXAMPLE:
BOOK THAT FLIGHT (IV)

Graphically

Earley

� As with most dynamic programming
approaches, the answer is found by
looking in the table in the right place.

�  In this case, there should be an S state in
the final column that spans from 0 to n+1
and is complete.

�  If that’s the case you’re done.
◦  S –> α · [0,n+1]	

Earley Algorithm
� March through chart left-to-right.
� At each step, apply 1 of 3 operators
◦  Predictor
�  Create new states representing top-down

expectations
◦  Scanner
�  Match word predictions (rule with word after dot)

to words
◦ Completer
�  When a state is complete, see what rules were

looking for that completed constituent

Earley’s example 1
Predict - Scan- Complete

S -> NP . VP
NP -> NP . PP
VP -> . V NP
VP -> . VP PP
PP -> . P NP
NP -> John .
NP -> . Sue
NP -> . Denver
V -> . called
V ->. sue
P -> . from

John called Sue from Denver
S -> . NP VP
NP -> . NP PP
P -> . V NP
VP -> . VP PP
PP -> . P NP
NP -> . John
NP -> . Sue
NP -> . Denver
V -> . called
V ->. sue
P -> . from

S -> . NP VP
NP -> . NP PP
NP -> . John
NP -> . Sue
NP -> . Denver

Earley’s example 2
John called Sue from
Denver

S -> NP . VP
NP -> NP . PP
VP -> . V NP
VP -> . VP PP
PP -> . P NP
V -> . called
V ->. sue
P -> . from

S -> NP . VP
NP -> NP . PP
VP -> . V NP
VP -> . VP PP
PP -> . P NP
V -> . called
V ->. sue
P -> . from

S -> NP . VP
NP -> NP . PP
VP -> V . NP

V -> called .

Earley’s example 3
John called Sue from
Denver

S -> NP VP .
S -> NP . VP
NP -> NP . PP
VP -> V NP .
VP -> VP .
PP
NP -> Sue .

S -> NP . VP
NP -> NP . PP
VP -> V . NP
VP -> . VP PP
PP -> . P NP
NP -> . John
NP -> . Sue
NP -> . Denver

NP -> . Sue

Earley’s example 4
John called Sue from Denver

S -> NP . VP
NP -> NP . PP
VP -> V . NP
VP -> VP . PP
PP -> . P NP
P -> . from

P -> . from

S -> NP . VP
NP -> NP . PP
VP -> VP . PP
PP -> P . NP
P -> from .

NP -> . John
NP -> . Sue
NP -> . Denver

NP -> .
Denver

NP -> Denver .
PP -> P NP .
NP -> NP PP .
VP -> VP PP .
VP -> V NP .
S -> NP VP .

Predictor
�  Given a state
◦  With a non-terminal to right of dot
◦  That is not a part-of-speech category
◦  Create a new state for each expansion of the non-

terminal
◦  Place these new states into same chart entry as

generated state, beginning and ending where
generating state ends.
◦  So predictor looking at
�  S -> . VP [0,0]
◦  results in
�  VP -> . Verb [0,0]
�  VP -> . Verb NP [0,0]

Scanner
�  Given a state
◦  With a non-terminal to right of dot
◦  That is a part-of-speech category
◦  If the next word in the input matches this part-of-speech
◦  Create a new state with dot moved over the non-terminal
◦  So scanner looking at

�  VP -> . Verb NP [0,0]

◦  If the next word, “book”, can be a verb, add new state:
�  VP -> Verb . NP [0,1]

◦  Add this state to chart entry following current one
◦  Note: Earley algorithm uses top-down input to disambiguate

POS! Only POS predicted by some state can get added to
chart!

Completer
�  Applied to a state when its dot has reached right end of

role.
�  Parser has discovered a category over some span of input.
�  Find and advance all previous states that were looking for

this category
◦  copy state, move dot, insert in current chart entry

�  Given:
◦  NP -> Det Nominal . [1,3]
◦  VP -> Verb. NP [0,1]

�  Add
◦  VP -> Verb NP . [0,3]

Earley: how do we know we are done?

� How do we know when we are done?
�  Find an S state in the final column that

spans from 0 to n+1 and is complete.
�  If that’s the case you’re done.
◦  S –> α · [0,n+1]	

Earley

�  So sweep through the table from 0 to n
+1…
◦ New predicted states are created by starting

top-down from S
◦ New incomplete states are created by

advancing existing states as new constituents
are discovered
◦ New complete states are created in the same

way.

Earley

�  More specifically…
1.  Predict all the states you can upfront
2.  Read a word

1.  Extend states based on matches
2.  Add new predictions
3.  Go to 2

3.  Look at N+1 to see if you have a winner

Example

� Book that flight
� We should find… an S from 0 to 3 that is

a completed state…

Example

Example

Example

Details

� What kind of algorithms did we just
describe (both Earley and CKY)
◦ Not parsers – recognizers
�  The presence of an S state with the right attributes

in the right place indicates a successful recognition.
�  But no parse tree… no parser
�  That’s how we solve (not) an exponential problem

in polynomial time

Back to Ambiguity

� Did we solve it?

Ambiguity

Converting Earley from Recognizer to Parser

� With the addition of a few pointers we
have a parser

� Augment the “Completer” to point to
where we came from.

Augmenting the chart with structural information

S8
S9

S10

S11

S13
S12

S8

S9
S8

Retrieving Parse Trees from Chart

�  All the possible parses for an input are in the
table

�  We just need to read off all the backpointers
from every complete S in the last column of the
table

�  Find all the S -> X . [0,N+1]
�  Follow the structural traces from the

Completer
�  Of course, this won’t be polynomial time, since

there could be an exponential number of trees
�  So we can at least represent ambiguity

efficiently

Statistical Parsing
�  Statistical parsing uses a probabilistic model of

syntax in order to assign probabilities to each
parse tree.

�  Provides principled approach to resolving
syntactic ambiguity.

�  Allows supervised learning of parsers from tree-
banks of parse trees provided by human
linguists.

�  Also allows unsupervised learning of parsers
from unannotated text, but the accuracy of such
parsers has been limited.

129

130

Probabilistic Context Free Grammar
(PCFG)
�  A PCFG is a probabilistic version of a CFG

where each production has a probability.
�  Probabilities of all productions rewriting a

given non-terminal must add to 1, defining a
distribution for each non-terminal.

�  String generation is now probabilistic where
production probabilities are used to non-
deterministically select a production for
rewriting a given non-terminal.

PCFGs	 –	 Nota3on	
� w1n	 =	 w1	 …	 wn	 	 =	 the	 word	 sequence	 from	 1	
to	 n	 (sentence	 of	 length	 n)	 	

� wab	 =	 the	 subsequence	 wa	 …	 wb	 	 	
� Nj

ab
	 	 =	 the	 nonterminal	 Nj	 domina3ng	 wa	 …	 wb	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Nj	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 wa	 …	 wb	
�  We’ll	 write	 P(Ni	 	 →	 ζj)	 to	 mean	 	 	 	 P(Ni	 →	 ζj	 |	 Ni)	
� We’ll	 want	 to	 calculate	 maxt	 P(t	 ⇒*	 wab)	

The	 probability	 of	 trees	 and	 strings	
�  P(w1n,	 t)	 -‐-‐	 The	 probability	 of	 tree	 is	 the	
product	 of	 the	 probabili3es	 of	 the	 rules	 used	
to	 generate	 it.	

	
	
�  P(w1n)	 -‐-‐	 The	 probability	 of	 the	 string	 is	 the	
sum	 of	 the	 probabili3es	 of	 the	 trees	 which	
have	 that	 string	 as	 their	 yield	
	
	 	 	 	 P(w1n)	 =	 Σt	 P(w1n,	 t)	 	 where	 t	 is	 a	 parse	 of	 w1n	 	

∏∏
∈→=∈→=

=
twXRtABXR

n
i

RPRPtwP
}{}{

1)()(),(

Example: A Simple PCFG
(in Chomsky Normal Form)

S → NP VP 1.0

VP → V NP 0.7
VP → VP PP 0.3

PP → P NP 1.0

P → with 1.0

V → saw 1.0

 NP → NP PP 0.4

 NP → astronomers 0.1
 NP → ears 0.18

 NP → saw 0.04

 NP → stars 0.18

 NP → telescope 0.1

=)(1tP

Tree	 and	 String	 Probabili3es	 	
•  w15 = astronomers saw stars with ears
•  P(t1) = 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18
 * 1.0 * 1.0 * 0.18
 = 0.0009072
•  P(t2) = 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18
 * 1.0 * 1.0 * 0.18
 = 0.0006804
•  P(w15) = P(t1) + P(t2)
 = 0.0009072 + 0.0006804

 = 0.0015876

Simple PCFG for ATIS English

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → VP PP
PP → Prep NP

Grammar
0.8
0.1
0.1
0.2
0.2
0.6
0.3
0.2
0.5
0.2
0.5
0.3
1.0

Prob

+

+

+

+

1.0

1.0

1.0

1.0

Det → the | a | that | this
 0.6 0.2 0.1 0.1
Noun → book | flight | meal | money
 0.1 0.5 0.2 0.2
Verb → book | include | prefer
 0.5 0.2 0.3
Pronoun → I | he | she | me
 0.5 0.1 0.1 0.3
Proper-Noun → Houston | NWA
 0.8 0.2
Aux → does
 1.0
Prep → from | to | on | near | through
 0.25 0.25 0.1 0.2 0.2

Lexicon

138

Sentence Probability
�  Assume productions for each node are chosen

independently.
�  Probability of derivation is the product of the

probabilities of its productions.
P(D1) = 0.1 x 0.5 x 0.5 x 0.6 x 0.6 x
 0.5 x 0.3 x 1.0 x 0.2 x 0.2 x
 0.5 x 0.8
 = 0.0000216

D1 S

VP

Verb NP
 Det Nominal

Nominal PP

book

Prep NP
through

Houston
Proper-Noun

the

flight
Noun

0.5

0.5
0.6

0.6 0.5

1.0

0.2
0.3

0.5 0.2

0.8

0.1

Syntactic Disambiguation
�  Resolve ambiguity by picking most probable

parse tree.

139
139

D2

VP

Verb NP
 Det Nominal book

Prep NP
through

Houston
Proper-Noun

the
flight
Noun

0.5

0.5
0.6

0.6 1.0

0.2
0.3

0.5 0.2

0.8

S

VP
0.1

PP

0.3

P(D2) = 0.1 x 0.3 x 0.5 x 0.6 x 0.5 x
 0.6 x 0.3 x 1.0 x 0.5 x 0.2 x
 0.2 x 0.8
 = 0.00001296

Sentence Probability
� Probability of a sentence is the sum of the

probabilities of all of its derivations.

140

P(“book the flight through Houston”) =
P(D1) + P(D2) = 0.0000216 + 0.00001296
 = 0.00003456

141

Three Useful PCFG Tasks
� Observation likelihood: To classify and order

sentences.
� Most likely derivation: To determine the

most likely parse tree for a sentence.
� Maximum likelihood training: To train a

PCFG to fit empirical training data.

PCFG: Most Likely Derivation
� There is an analog to the Viterbi algorithm

to efficiently determine the most probable
derivation (parse tree) for a sentence.

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

PCFG
Parser

John liked the dog in the pen.
S

NP VP

John V NP PP

liked the dog in the pen X

143

PCFG: Most Likely Derivation
� There is an analog to the Viterbi algorithm

to efficiently determine the most probable
derivation (parse tree) for a sentence.

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

PCFG
Parser

John liked the dog in the pen.
S

NP VP

John V NP

liked the dog in the pen

Probabilistic CKY
� CKY can be modified for PCFG parsing

by including in each cell a probability for
each non-terminal.

� Cell[i,j] must retain the most probable
derivation of each constituent (non-
terminal) covering words i +1 through j
together with its associated probability.

� When transforming the grammar to CNF,
must set production probabilities to
preserve the probability of derivations.

 Probabilistic Grammar Conversion

S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar Chomsky Normal Form
S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
 0.01 0.004 0.006
S → Verb NP
S → VP PP
NP → I | he | she | me
 0.1 0.02 0.02 0.06
NP → Houston | NWA
 0.16 .04
NP → Det Nominal
Nominal → book | flight | meal | money
 0.03 0.15 0.06 0.06
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
 0.1 0.04 0.06
VP → Verb NP
VP → VP PP
PP → Prep NP

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

0.8
0.1
1.0

0.05
0.03

0.6

0.2
0.5

0.5
0.3
1.0

Probabilistic CKY Parser

146

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

Probabilistic CKY Parser

147

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

Probabilistic CKY Parser

148

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

Probabilistic CKY Parser

149

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

Probabilistic CKY Parser

150

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.
8

PP:1.0*.2*.16
 =.032

Probabilistic CKY Parser

151

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.
8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

Probabilistic CKY Parser

152

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.
8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
 .0024
 =.000864

Probabilistic CKY Parser

153

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.
8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
 .0024
 =.000864

S:.05*.5*
 .000864
 =.0000216

Probabilistic CKY Parser

154

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.
8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
 .0024
 =.000864

S:.0000216

S:.03*.0135*
 .032
 =.00001296

Probabilistic CKY Parser

155

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.
8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
 .0024
 =.000864

S:.0000216
Pick most probable
parse, i.e. take max to
combine probabilities
of multiple derivations
of each constituent in
each cell.

156

PCFG: Observation Likelihood
�  There is an analog to Forward algorithm for

HMMs called the Inside algorithm for efficiently
determining how likely a string is to be produced
by a PCFG.

�  Can use a PCFG as a language model to choose
between alternative sentences for speech
recognition or machine translation.

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

The dog big barked.

The big dog barked

O1

O2

?

?

P(O2 | English) > P(O1 | English) ?

Inside Algorithm
� Use CKY probabilistic parsing algorithm

but combine probabilities of multiple
derivations of any constituent using
addition instead of max.

157

158

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.
8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
 .0024
 =.000864

S:.0000216

S:..00001296

Probabilistic CKY Parser
for Inside Computation

159

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.
8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
 .0024
 =.000864

 +.0000216
 =.00003456

S: .00001296 Sum probabilities
of multiple derivations
of each constituent in
each cell.

Probabilistic CKY Parser
for Inside Computation

160

PCFG: Supervised Training
�  If parse trees are provided for training sentences, a

grammar and its parameters can be can all be
estimated directly from counts accumulated from the
tree-bank (with appropriate smoothing).

.

.

.

Tree Bank

Supervised
PCFG
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

S

NP VP

John V NP PP

put the dog in the pen

S

NP VP

John V NP PP

put the dog in the pen

Estimating Production Probabilities
� Set of production rules can be taken directly

from the set of rewrites in the treebank.
� Parameters can be directly estimated from

frequency counts in the treebank.

161

)count(
)count(

)count(
)count()|(

α
βα

γα
βα

αβα

γ

→
=

→

→
=→
∑

P

162

PCFG: Maximum Likelihood
Training

�  Given a set of sentences, induce a grammar that
maximizes the probability that this data was
generated from this grammar.

�  Assume the number of non-terminals in the
grammar is specified.

�  Only need to have an unannotated set of
sequences generated from the model. Does not
need correct parse trees for these sentences. In this
sense, it is unsupervised.

163

PCFG: Maximum Likelihood
Training

John ate the apple
A dog bit Mary
Mary hit the dog
John gave Mary the cat.

.

.

.

Training Sentences

PCFG
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Inside-Outside
�  The Inside-Outside algorithm is a version of EM for

unsupervised learning of a PCFG.
◦  Analogous to Baum-Welch (forward-backward) for HMMs

�  Given the number of non-terminals, construct all possible
CNF productions with these non-terminals and observed
terminal symbols.

�  Use EM to iteratively train the probabilities of these
productions to locally maximize the likelihood of the data.
◦  See Manning and Schütze text for details

�  Experimental results are not impressive, but recent work
imposes additional constraints to improve unsupervised
grammar learning.

165

Vanilla PCFG Limitations
�  Since probabilities of productions do not rely on

specific words or concepts, only general
structural disambiguation is possible (e.g. prefer
to attach PPs to Nominals).

�  Consequently, vanilla PCFGs cannot resolve
syntactic ambiguities that require semantics to
resolve, e.g. ate with fork vs. meatballs.

�  In order to work well, PCFGs must be
lexicalized, i.e. productions must be specialized
to specific words by including their head-word
in their LHS non-terminals (e.g. VP-ate).

Example of Importance of
Lexicalization

�  A general preference for attaching PPs to NPs
rather than VPs can be learned by a vanilla PCFG.

�  But the desired preference can depend on specific
words.

166

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

PCFG
Parser

S

NP VP

John V NP PP

put the dog in the pen

John put the dog in the pen.

167

Example of Importance of
Lexicalization

�  A general preference for attaching PPs to NPs
rather than VPs can be learned by a vanilla PCFG.

�  But the desired preference can depend on specific
words.

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

PCFG
Parser

S

NP VP

John V NP

put the dog in the pen X
John put the dog in the pen.

Head Words
�  Syntactic phrases usually have a word in them

that is most “central” to the phrase.
�  Linguists have defined the concept of a lexical

head of a phrase.
�  Simple rules can identify the head of any phrase

by percolating head words up the parse tree.
◦  Head of a VP is the main verb
◦  Head of an NP is the main noun
◦  Head of a PP is the preposition
◦  Head of a sentence is the head of its VP

Lexicalized Productions
�  Specialized productions can be generated by

including the head word and its POS of each non-
terminal as part of that non-terminal’s symbol.

S

VP

VBD NP
 DT Nominal

Nominal PP

liked

IN NP

in

the

dog
NN

 DT Nominal

NN the

pen

NNP

NP

John

pen-NN

pen-NN

in-IN dog-NN

dog-NN

dog-NN

liked-VBD

liked-VBD

John-NNP

Nominaldog-NN → Nominaldog-NN PPin-IN

Lexicalized Productions

S

VP

VP PP

 DT Nominal put

IN NP

in

the

dog
NN

 DT Nominal

NN the

pen

NNP

NP

John
pen-NN

pen-NN

in-IN

dog-NN

dog-NN

put-VBD

put-VBD

John-NNP

NP VBD

put-VBD

VPput-VBD → VPput-VBD PPin-IN

Parameterizing Lexicalized
Productions
�  Accurately estimating parameters on such a

large number of very specialized productions
could require enormous amounts of treebank
data.

�  Need some way of estimating parameters for
lexicalized productions that makes reasonable
independence assumptions so that accurate
probabilities for very specific rules can be
learned.

Collins Parser
� Collins (1999) parser assumes a simple

generative model of lexicalized
productions.

� Models productions based on context to
the left and the right of the head daughter.
◦ LHS → LnLn-1…L1H R1…Rm-1Rm

� First generate the head (H) and then
repeatedly generate left (Li) and right (Ri)
context symbols until the symbol STOP is
generated.

Sample Production Generation

VPput-VBD → VBDput-VBD NPdog-NN PPin-IN
Note: Penn treebank tends to
have fairly flat parse trees that
produce long productions.

VPput-VBD → VBDput-VBD NPdog-NN
H L1

STOP PPin-IN STOP
R1 R2 R3

PL(STOP | VPput-VBD) * PH(VBD | Vpput-VBD)*
 PR(NPdog-NN | VPput-VBD)*
 PR(PPin-IN | VPput-VBD) * PR(STOP | VPput-VBD)

Count(PPin-IN right of head in a VPput-VBD production)

Estimating Production Generation
Parameters

�  Estimate PH, PL, and PR parameters from treebank data.

PR(PPin-IN | VPput-VBD) =
Count(symbol right of head in a VPput-VBD)

Count(NPdog-NN right of head in a VPput-VBD production)
PR(NPdog-NN | VPput-VBD) =

•  Smooth estimates by linearly interpolating with
simpler models conditioned on just POS tag or no
lexical info.

smPR(PPin-IN | VPput-VBD) = λ1 PR(PPin-IN | VPput-VBD)
 + (1- λ1) (λ2 PR(PPin-IN | VPVBD) +
 (1- λ2) PR(PPin-IN | VP))

Count(symbol right of head in a VPput-VBD)

Missed Context Dependence
� Another problem with CFGs is that which

production is used to expand a non-
terminal is independent of its context.

� However, this independence is frequently
violated for normal grammars.
◦ NPs that are subjects are more likely to be

pronouns than NPs that are objects.

175

Splitting Non-Terminals
� To provide more contextual information,

non-terminals can be split into multiple
new non-terminals based on their parent in
the parse tree using parent annotation.
◦ A subject NP becomes NP^S since its parent

node is an S.
◦ An object NP becomes NP^VP since its parent

node is a VP

176

Parent Annotation Example

177

S

VP

VBD NP
 DT Nominal

Nominal PP

liked

IN NP

in

the

dog
NN

 DT Nominal
NN the

pen

NNP

NP

John

^NP

^PP

^Nominal ^Nominal

^NP

^VP

^S ^S

^Nominal

^NP

^PP
^Nominal

^NP

^VP ^NP

VP^S → VBD^VP NP^VP

Split and Merge
�  Non-terminal splitting greatly increases the size of

the grammar and the number of parameters that need
to be learned from limited training data.

�  Best approach is to only split non-terminals when it
improves the accuracy of the grammar.

�  May also help to merge some non-terminals to
remove some un-helpful distinctions and learn more
accurate parameters for the merged productions.

�  Method: Heuristically search for a combination of
splits and merges that produces a grammar that
maximizes the likelihood of the training treebank.

178

179

Treebanks
�  English Penn Treebank: Standard corpus for

testing syntactic parsing consists of 1.2 M words
of text from the Wall Street Journal (WSJ).

�  Typical to train on about 40,000 parsed
sentences and test on an additional standard
disjoint test set of 2,416 sentences.

�  Chinese Penn Treebank: 100K words from the
Xinhua news service.

�  Other corpora existing in many languages, see
the Wikipedia article “Treebank”

First WSJ Sentence

180

((S
 (NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))
 (, ,)
 (ADJP
 (NP (CD 61) (NNS years))
 (JJ old))
 (, ,))
 (VP (MD will)
 (VP (VB join)
 (NP (DT the) (NN board))
 (PP-CLR (IN as)
 (NP (DT a) (JJ nonexecutive) (NN director)))
 (NP-TMP (NNP Nov.) (CD 29))))
 (. .)))

WSJ Sentence with Trace (NONE)

181

((S
 (NP-SBJ (DT The) (NNP Illinois) (NNP Supreme) (NNP Court))
 (VP (VBD ordered)
 (NP-1 (DT the) (NN commission))
 (S
 (NP-SBJ (-NONE- *-1))
 (VP (TO to)
 (VP
 (VP (VB audit)
 (NP
 (NP (NNP Commonwealth) (NNP Edison) (POS 's))
 (NN construction) (NNS expenses)))
 (CC and)
 (VP (VB refund)
 (NP (DT any) (JJ unreasonable) (NNS expenses)))))))
 (. .)))

182

Parsing Evaluation Metrics
�  PARSEVAL metrics measure the fraction of the

constituents that match between the computed and
human parse trees. If P is the system’s parse tree and
T is the human parse tree (the “gold standard”):
◦  Recall = (# correct constituents in P) / (# constituents in T)
◦  Precision = (# correct constituents in P) / (# constituents in P)

�  Labeled Precision and labeled recall require getting the
non-terminal label on the constituent node correct to
count as correct.

�  F1 is the harmonic mean of precision and recall.

Computing Evaluation Metrics

Correct Tree T
S

VP

Verb NP
 Det Nominal

Nominal PP

book

Prep NP
through

Houston
Proper-Noun

the

flight
Noun

Computed Tree P

VP

Verb NP
 Det Nominal book

Prep NP
through

Houston
Proper-Noun

the
flight
Noun

S

VP

PP

Constituents: 12 # Constituents: 12
Correct Constituents: 10

Recall = 10/12= 83.3% Precision = 10/12=83.3% F1 = 83.3%

184

Treebank Results
�  Results of current state-of-the-art systems on the

English Penn WSJ treebank are slightly greater than
90% labeled precision and recall.

Discriminative Parse Reranking
�  Motivation: Even when the top-ranked parse

not correct, frequently the correct parse is
one of those ranked highly by a statistical
parser.

�  Use a discriminative classifier that is trained
to select the best parse from the N-best
parses produced by the original parser.

�  Reranker can exploit global features of the
entire parse whereas a PCFG is restricted to
making decisions based on local info.

185

2-Stage Reranking Approach
� Adapt the PCFG parser to produce an N-

best list of the most probable parses in
addition to the most-likely one.

� Extract from each of these parses, a set of
global features that help determine if it is
a good parse tree.

� Train a discriminative classifier (e.g.
logistic regression) using the best parse in
each N-best list as positive and others as
negative.

186

Parse Reranking

187

sentence N-Best
Parse Trees

 PCFG Parser

 Parse Tree
 Feature
 Extractor

 Parse Tree
Descriptions

 Discriminative
 Parse Tree
 Classifier

 Best
Parse Tree

Sample Parse Tree Features
�  Probability of the parse from the PCFG.
�  The number of parallel conjuncts.
◦ “the bird in the tree and the squirrel on the ground”
◦ “the bird and the squirrel in the tree”

�  The degree to which the parse tree is right
branching.
◦  English parses tend to be right branching (cf. parse of
“Book the flight through Houston”)

�  Frequency of various tree fragments, i.e. specific
combinations of 2 or 3 rules.

188

Evaluation of Reranking
� Reranking is limited by oracle accuracy,

i.e. the accuracy that results when an
omniscient oracle picks the best parse
from the N-best list.

� Typical current oracle accuracy is around
F1=97%

� Reranking can generally improve test
accuracy of current PCFG models a
percentage point or two.

189

Other Discriminative Parsing
� There are also parsing models that move

from generative PCFGs to a fully
discriminative model, e.g. max margin
parsing (Taskar et al., 2004).

� There is also a recent model that
efficiently reranks all of the parses in the
complete (compactly-encoded) parse
forest, avoiding the need to generate an N-
best list (forest reranking, Huang, 2008).

190

Human Parsing
�  Computational parsers can be used to predict human

reading time as measured by tracking the time taken
to read each word in a sentence.

�  Psycholinguistic studies show that words that are
more probable given the preceding lexical and
syntactic context are read faster.
◦  John put the dog in the pen with a lock.
◦  John put the dog in the pen with a bone in the car.
◦  John liked the dog in the pen with a bone.

�  Modeling these effects requires an incremental
statistical parser that incorporates one word at a
time into a continuously growing parse tree.

191

Garden Path Sentences
�  People are confused by sentences that seem to have a

particular syntactic structure but then suddenly violate
this structure, so the listener is “lead down the
garden path”.
◦  The horse raced past the barn fell.

�  vs. The horse raced past the barn broke his leg.
◦  The complex houses married students.
◦  The old man the sea.
◦  While Anna dressed the baby spit up on the bed.

�  Incremental computational parsers can try to predict
and explain the problems encountered parsing such
sentences.

192

Center Embedding
�  Nested expressions are hard for humans to process

beyond 1 or 2 levels of nesting.
◦  The rat the cat chased died.
◦  The rat the cat the dog bit chased died.
◦  The rat the cat the dog the boy owned bit chased died.

�  Requires remembering and popping incomplete
constituents from a stack and strains human short-term
memory.

�  Equivalent “tail embedded” (tail recursive) versions
are easier to understand since no stack is required.
◦  The boy owned a dog that bit a cat that chased a rat that died.

193

Dependency Grammars
�  An alternative to phrase-structure grammar is to

define a parse as a directed graph between the words
of a sentence representing dependencies between the
words.

194

liked

John dog

pen

in the

the

liked

John dog

pen

in
the

the

nsubj dobj

det

det

Typed
dependency
parse

Dependency Graph from Parse Tree
�  Can convert a phrase structure parse to a dependency

tree by making the head of each non-head child of a
node depend on the head of the head child.

195

S

VP

VBD NP
 DT Nominal

Nominal PP

liked

IN NP

in

the

dog
NN

 DT Nominal

NN the

pen

NNP

NP

John

pen-NN

pen-NN

in-IN dog-NN

dog-NN

dog-NN

liked-VBD

liked-VBD

John-NNP

liked

John dog

pen

in the

the

Unification Grammars
�  In order to handle agreement issues more

effectively, each constituent has a list of features
such as number, person, gender, etc. which may or
not be specified for a given constituent.

�  In order for two constituents to combine to form a
larger constituent, their features must unify, i.e.
consistently combine into a merged set of features.

�  Expressive grammars and parsers (e.g. HPSG) have
been developed using this approach and have been
partially integrated with modern statistical models
of disambiguation.

196

Mildly Context-Sensitive Grammars
�  Some grammatical formalisms provide a degree of

context-sensitivity that helps capture aspects of NL
syntax that are not easily handled by CFGs.

�  Tree Adjoining Grammar (TAG) is based on
combining tree fragments rather than individual
phrases.

�  Combinatory Categorial Grammar (CCG) consists of:
◦  Categorial Lexicon that associates a syntactic and semantic

category with each word.
◦  Combinatory Rules that define how categories combine to

form other categories.

197

Statistical Parsing Conclusions
� Statistical models such as PCFGs allow

for probabilistic resolution of ambiguities.
� PCFGs can be easily learned from

treebanks.
� Lexicalization and non-terminal splitting

are required to effectively resolve many
ambiguities.

� Current statistical parsers are quite
accurate but not yet at the level of human-
expert agreement.

198

