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Verb Phrases 
� English VPs consist of a head verb along 

with 0 or more following constituents 
which we’ll call arguments. 
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Subcategorization 
�  Even though there are many valid VP 

rules in English, not all verbs are allowed 
to participate in all those VP rules. 

� We can subcategorize the verbs in a 
language according to the sets of VP 
rules that they participate in. 

�  This is just an elaboration on the 
traditional notion of transitive/
intransitive. 

� Modern grammars have many such 
classes 
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Subcategorization 
� Sneeze:  John sneezed 
� Find:  Please find [a flight to NY]NP 

� Give: Give [me]NP[a cheaper fare]NP 

� Help: Can you help [me]NP[with a 
flight]PP 

� Prefer: I prefer [to leave earlier]TO-VP 

� Told: I was told [United has a flight]S 

� … 
 



Programming Analogy 
�  It may help to view things this way 
◦ Verbs are functions or methods 
◦ They participate in specify the number, 

position, and type of the arguments they 
take... 
�  That is, just like the formal parameters to a 

method.  
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Subcategorization 
� *John sneezed the book 
� *I prefer United has a flight 
� *Give with a flight 

� As with agreement phenomena, we 
need a way to formally express these 
facts 
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Why? 
� Right now, the various rules for VPs 

overgenerate. 
◦ They permit the presence of strings containing 

verbs and arguments that don’t go together 
◦  For example 
◦ VP -> V NP therefore 
 Sneezed the book is a VP since “sneeze” is a 
verb and “the book” is a valid NP 
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Possible CFG Solution 
�  Possible solution for 

agreement. 
�  Can use the same 

trick for all the verb/
VP classes. 

 

�  SgS -> SgNP SgVP 
�  PlS -> PlNp PlVP 
�  SgNP -> SgDet 

SgNom 
�  PlNP -> PlDet PlNom 
�  PlVP -> PlV NP 
�  SgVP ->SgV Np 
�  … 
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CFG Solution for Agreement 

�  It works and stays within the power of 
CFGs 
◦ But it is a fairly ugly one 

� And it doesn’t scale all that well 
because of the interaction among the 
various constraints explodes the 
number of rules in our grammar. 
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Summary 
�  CFGs appear to be just about what we need 

to account for a lot of basic syntactic 
structure in English. 

�  But there are problems 
◦  That can be dealt with adequately, although not 

elegantly, by staying within the CFG framework. 
�  There are simpler, more elegant, solutions 

that take us out of the CFG framework 
(beyond its formal power) 
◦  LFG, HPSG, Construction grammar, XTAG, etc. 
◦  Chapter 15 explores one approach (feature 

unification) in more detail  
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Treebanks 
�  Treebanks are corpora in which each 

sentence has been paired with a parse 
structure (presumably the correct one). 

�  These are generally created  
1.  By first parsing the collection with an automatic 

parser 
2.  And then having human annotators hand 

correct each parse as necessary. 
�  This generally requires detailed annotation 

guidelines that provide a POS tagset, a 
grammar, and instructions for how to deal 
with particular grammatical constructions. 



Parens and Trees 
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(S (NP (Pro I)) 
     (VP (Verb prefer) 
            (NP (Det a) 
               (Nom (Nom (Noun morning)) 
                             (Noun flight))))) 
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Penn Treebank 
� Penn TreeBank is a widely used treebank. 

Most well known part is 
the Wall Street Journal 
section of the Penn 
TreeBank. 

§ 1 M words from the 
1987-1989 Wall 
Street Journal. 
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Treebank Grammars 
�  Treebanks implicitly define a grammar 

for the language covered in the 
treebank. 

�  Simply take the local rules that make up 
the sub-trees in all the trees in the 
collection and you have a grammar 
◦  The WSJ section gives us about 12k rules if 

you do this 
� Not complete, but if you have decent 

size corpus, you will have a grammar 
with decent coverage. 
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Treebank Grammars 
� Such grammars tend to be very flat due to 

the fact that they tend to avoid recursion. 
◦ To ease annotator’s burden, among things 

� For example, the Penn Treebank has 
~4500 different rules for VPs. Among 
them... 
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Treebank Uses 
� Treebanks (and head-finding) are 

particularly critical to the development 
of statistical parsers 
◦ Chapter 14 
�  We will get there 

� Also valuable to Corpus Linguistics  
◦  Investigating the empirical details of 

various constructions in a given language 
�  How often do people use various constructions 

and in what contexts... 
�  Do people ever say X ... 
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Head Finding 
� Finding heads in treebank trees is a 

task that arises frequently in many 
applications. 
◦ As we’ll see it is particularly important in 

statistical parsing 
� We can visualize this task by 

annotating the nodes of a parse tree 
with the heads of each corresponding 
node. 
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Lexically Decorated Tree 
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Head Finding 
� Given a tree, the standard way to do 

head finding is to use a simple set of 
tree traversal rules specific to each 
non-terminal in the grammar.  
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Noun Phrases 
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Treebank Uses 
� Treebanks (and head-finding) are 

particularly critical to the development 
of statistical parsers 
◦ Chapter 14 

� Also valuable to Corpus Linguistics  
◦  Investigating the empirical details of 

various constructions in a given language 
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Dependency Grammars 
�  In CFG-style phrase-structure 

grammars the main focus is on 
constituents and ordering. 

� But it turns out you can get a lot done 
with just labeled relations among the 
words in an utterance. 

�  In a dependency grammar framework, 
a parse is a tree where  
◦  The nodes stand for the words in an utterance 
◦  The links between the words represent 

dependency relations between pairs of words. 
�  Relations may be typed (labeled), or not. 
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Dependency Relations 
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Dependency Parse 



3/8/15 25 

Dependency Parsing 
� The dependency approach has a number of 

advantages over full phrase-structure 
parsing. 
◦  It deals well with free word order languages 

where the constituent structure is quite fluid 
◦  Parsing is much faster than with CFG-based 

parsers 
◦ Dependency structure often captures the 

syntactic relations needed by later applications 
�  CFG-based approaches often extract this same 

information from trees anyway 
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Summary 
�  Context-free grammars can be used to 

model various facts about the syntax of a 
language. 

�  When paired with parsers, such grammars 
consititute a critical component in many 
applications. 

�  Constituency is a key phenomena easily 
captured with CFG rules. 
◦  But agreement and subcategorization do pose 

significant problems 
�  Treebanks pair sentences in corpus with 

their corresponding trees. 
 



1.	  Phrase	  structure	  
�  Phrase	  structure	  trees	  organize	  
sentences	  into	  cons%tuents	  or	  
brackets.	  

�  Each	  cons3tuent	  gets	  a	  label.	  

�  The	  cons3tuents	  are	  nested	  in	  
a	  tree	  form.	  

�  Linguists	  can	  and	  do	  argue	  
about	  the	  details.	  

�  Lots	  of	  ambiguity	  …	  



Cons3tuency	  Tests	  
•  How do we know what nodes go in the tree? 

•  Classic constituency tests: 
– Substitution by proform 
– Question answers 
– Semantic grounds 

•  Coherence 
•  Reference 
•  Idioms 

– Dislocation 
– Conjunction 

•  Cross-linguistic arguments 



Conflic3ng	  Tests	  
Cons3tuency	  isn’t	  always	  clear.	  
	  
�  Phonological	  Reduc3on:	  
◦  I	  will	  go	  à	  I’ll	  go	  
◦  I	  want	  to	  go	  à	  I	  wanna	  go	  
◦  a	  le	  centre	  à	  au	  centre	  

�  Coordina3on	  
◦  He	  went	  to	  and	  came	  from	  the	  store.	  



�  Write	  symbolic	  or	  logical	  rules:	  

�  Use	  deduc3on	  systems	  to	  prove	  parses	  from	  words	  
◦  Minimal	  grammar	  on	  “Fed”	  sentence:	  	  36	  parses	  
◦  Simple,	  10-‐rule	  grammar:	  	  592	  parses	  
◦  Real-‐size	  grammar:	  	  many	  millions	  of	  parses	  
◦  With	  hand-‐built	  grammar,	  ~30%	  of	  sentences	  have	  no	  parse	  

�  This	  scales	  very	  badly.	  
◦  Hard	  to	  produce	  enough	  rules	  for	  every	  varia3on	  of	  language	  (coverage)	  
◦  Many,	  many	  parses	  for	  each	  valid	  sentence	  (disambigua3on)	  

Classical	  NLP:	  	  Parsing	  



Ambiguity	  examples	  



The	  bad	  effects	  of	  V/N	  ambigui3es	  



Ambigui3es:	  	  PP	  A^achment	  



A^achments	  
�  I	  cleaned	  the	  dishes	  from	  dinner.	  

�  I	  cleaned	  the	  dishes	  with	  detergent.	  

�  I	  cleaned	  the	  dishes	  in	  my	  pajamas.	  

�  I	  cleaned	  the	  dishes	  in	  the	  sink.	  



Syntac3c	  Ambigui3es	  1	  
�  Preposi3onal	  Phrases	  

They	  cooked	  the	  beans	  in	  the	  pot	  on	  the	  stove	  with	  handles.	  
	  

�  Par3cle	  vs.	  Preposi3on	  
The	  puppy	  tore	  up	  the	  staircase.	  
	  

�  Complement	  Structure	  
The	  tourists	  objected	  to	  the	  guide	  that	  they	  couldn’t	  hear.	  
She	  knows	  you	  like	  the	  back	  of	  her	  hand.	  
	  

�  Gerund	  vs.	  Par3cipial	  Adjec3ve	  
Visi%ng	  rela%ves	  can	  be	  boring.	  
Changing	  schedules	  frequently	  confused	  passengers.	  



Syntac3c	  Ambigui3es	  2	  
•  Modifier scope within NPs 

impractical design requirements 
plastic cup holder 
 

•  Multiple gap constructions 
The chicken is ready to eat. 
The contractors are rich enough to sue. 
 

•  Coordination scope 
Small rats and mice can squeeze into holes or cracks in 

the wall. 



Classical NLP Parsing: 
The problem and its solution 
•  Very constrained grammars attempt to limit unlikely/

weird parses for sentences 
– But the attempt makes the grammars not robust: many 

sentences have no parse 

•  A less constrained grammar can parse more 
sentences 
– But simple sentences end up with ever more parses 

•  Solution: We need mechanisms that allow us to find 
the most likely parse(s) 
–  Statistical parsing lets us work with very loose grammars 

that admit millions of parses for sentences but to still 
quickly find the best parse(s) 



Polynomial-‐3me	  Parsing	  with	  	  
Context	  Free	  Grammars	  



Parsing	  
Computa(onal	  task:	  
Given	  a	  set	  of	  grammar	  rules	  and	  a	  sentence,	  find	  

a	  valid	  parse	  of	  the	  sentence	  (efficiently)	  
	  
Naively,	  you	  could	  try	  all	  possible	  trees	  un3l	  you	  

get	  to	  a	  parse	  tree	  that	  conforms	  to	  the	  
grammar	  rules,	  that	  has	  “S”	  at	  the	  root,	  and	  
that	  has	  the	  right	  words	  at	  the	  leaves.	  	  	  

	  
But	  that	  takes	  exponen(al	  (me	  in	  the	  number	  of	  words.	  

39	  



Aspects	  of	  parsing	  
�  Running	  a	  grammar	  backwards	  to	  find	  possible	  structures	  for	  a	  

sentence	  

�  Parsing	  can	  be	  viewed	  as	  a	  search	  problem	  

�  Parsing	  is	  a	  hidden	  data	  problem	  

�  For	  the	  moment,	  we	  want	  to	  examine	  all	  structures	  for	  a	  string	  of	  
words	  

�  We	  can	  do	  this	  bo^om-‐up	  or	  top-‐down	  
◦  This	  dis3nc3on	  is	  independent	  of	  depth-‐first	  or	  breadth-‐first	  
search	  –	  we	  can	  do	  either	  both	  ways	  
◦  We	  search	  by	  building	  a	  search	  tree	  which	  his	  dis3nct	  from	  the	  
parse	  tree	  



Human	  parsing	  
�  Humans	  oeen	  do	  ambiguity	  maintenance	  
◦  Have	  the	  police	  …	  eaten	  their	  supper?	  
◦  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  come	  in	  and	  look	  around.	  
◦  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  taken	  out	  and	  shot.	  

�  But	  humans	  also	  commit	  early	  and	  are	  
“garden	  pathed”:	  
◦  The	  man	  who	  hunts	  ducks	  out	  on	  weekends.	  
◦  The	  coCon	  shirts	  are	  made	  from	  grows	  in	  
Mississippi.	  
◦  The	  horse	  raced	  past	  the	  barn	  fell.	  



A	  phrase	  structure	  grammar	  

•  S → NP  VP   N → cats 
•  VP → V  NP   N → claws 
•  VP → V  NP  PP   N → people 
•  NP → NP  PP   N → scratch 
•  NP → N    V → scratch 
•  NP → e    P → with 
•  NP → N  N 
•  PP → P  NP 

•  By convention, S is the start symbol, but in the PTB, 
we have an extra node at the top (ROOT, TOP) 



Phrase structure grammars = 
context-free grammars 
•  G = (T, N, S, R) 

– T is set of terminals 
– N is set of nonterminals 

•  For NLP, we usually distinguish out a set P ⊂ N of 
preterminals, which always rewrite as terminals 

•  S is the start symbol (one of the nonterminals) 
•  R is rules/productions of the form X → γ, where X 

is a nonterminal and γ is a sequence of terminals 
and nonterminals (possibly an empty sequence) 

•  A grammar G generates a language L. 



Probabilistic or stochastic context-
free grammars (PCFGs) 
•  G = (T, N, S, R, P) 

– T is set of terminals 
– N is set of nonterminals 

•  For NLP, we usually distinguish out a set P ⊂ N of 
preterminals, which always rewrite as terminals 

•  S is the start symbol (one of the nonterminals) 
•  R is rules/productions of the form X → γ, where X is a 

nonterminal and γ is a sequence of terminals and 
nonterminals (possibly an empty sequence) 

•  P(R) gives the probability of each rule. 

•  A grammar G generates a language model L. 

€ 

∀X ∈ N, P(X →γ) =1
X→γ ∈R
∑



Soundness	  and	  completeness	  
�  A	  parser	  is	  sound	  if	  every	  parse	  it	  returns	  is	  valid/
correct	  

�  A	  parser	  terminates	  if	  it	  is	  guaranteed	  to	  not	  go	  off	  into	  
an	  infinite	  loop	  

�  A	  parser	  is	  complete	  if	  for	  any	  given	  grammar	  and	  
sentence,	  it	  is	  sound,	  produces	  every	  valid	  parse	  for	  
that	  sentence,	  and	  terminates	  

�  (For	  many	  purposes,	  we	  se^le	  for	  sound	  but	  incomplete	  
parsers:	  e.g.,	  probabilis3c	  parsers	  that	  return	  a	  k-‐best	  
list.)	  



Top-‐down	  parsing	  
•  Top-down parsing is goal directed 

•  A top-down parser starts with a list of constituents 
to be built. The top-down parser rewrites the goals in 
the goal list by matching one against the LHS of the 
grammar rules, and expanding it with the RHS, 
attempting to match the sentence to be derived. 

•  If a goal can be rewritten in several ways, then there is 
a choice of which rule to apply (search problem) 

•  Can use depth-first or breadth-first search, and goal 
ordering. 



Top-‐down	  parsing	  



Problems	  with	  top-‐down	  parsing	  
•  Left recursive rules 

•  A top-down parser will do badly if there are many different rules for 
the same LHS.  Consider if there are 600 rules for S, 599 of which start 
with NP, but one of which starts with V, and the sentence starts with V. 

•  Useless work: expands things that are possible top-down but not there 

•  Top-down parsers do well if there is useful grammar-driven control: 
search is directed by the grammar 

•  Top-down is hopeless for rewriting parts of speech (preterminals) with 
words (terminals).  In practice that is always done bottom-up as lexical 
lookup. 

•  Repeated work: anywhere there is common substructure 



Repeated	  work…	  



Bo^om-‐up	  parsing	  
•  Bottom-up parsing is data directed 

•  The initial goal list of a bottom-up parser is the string to be parsed. If a 
sequence in the goal list matches the RHS of a rule, then this sequence 
may be replaced by the LHS of the rule. 

•  Parsing is finished when the goal list contains just the start category. 

•  If the RHS of several rules match the goal list, then there is a choice of 
which rule to apply (search problem) 

•  Can use depth-first or breadth-first search, and goal ordering. 

•  The standard presentation is as shift-reduce parsing. 



Problems	  with	  bo^om-‐up	  parsing	  
•  Unable to deal with empty categories: termination 

problem, unless rewriting empties as constituents is 
somehow restricted (but then it's generally 
incomplete) 

•  Useless work: locally possible, but globally impossible. 

•  Inefficient when there is great lexical ambiguity 
(grammar-driven control might help here) 

•  Conversely, it is data-directed: it attempts to parse 
the words that are there. 

•  Repeated work: anywhere there is common 
substructure 



Chomsky	  Normal	  Form	  

�  All	  rules	  are	  of	  the	  form	  X	  →	  Y	  Z	  or	  X	  →	  w.	  
�  A	  transforma3on	  to	  this	  form	  doesn’t	  change	  the	  
weak	  genera3ve	  capacity	  of	  CFGs.	  
◦  With	  some	  extra	  book-‐keeping	  in	  symbol	  names,	  you	  
can	  even	  reconstruct	  the	  same	  trees	  with	  a	  
detransform	  
◦  	  Unaries/emp3es	  are	  removed	  recursively	  
◦  N-‐ary	  rules	  introduce	  new	  nonterminals:	  

�  VP	  →	  V	  NP	  PP	  	  becomes	  	  VP	  →	  V	  @VP-‐V	  	  and	  	  @VP-‐V	  →	  NP	  PP	  

�  In	  prac3ce	  it’s	  a	  pain	  
◦  Reconstruc3ng	  n-‐aries	  is	  easy	  
◦  Reconstruc3ng	  unaries	  can	  be	  trickier	  

�  But	  it	  makes	  parsing	  easier/more	  efficient	  
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For Now 
� Assume… 
◦  You have all the words already in some buffer 
◦ The input is not POS tagged prior to parsing 
◦ We won’t worry about morphological analysis 
◦ All the words are known 
◦ These are all problematic in various ways, and 

would have to be addressed in real 
applications. 
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Top-Down Search 
� Since we’re trying to find trees rooted 

with an S (Sentences), why not start 
with the rules that give us an S. 

� Then we can work our way down from 
there to the words. 
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Top Down Space 



3/8/15 56 

Bottom-Up Parsing 
� Of course, we also want trees that 

cover the input words. So we might 
also start with trees that link up with 
the words in the right way. 

� Then work your way up from there to 
larger and larger trees. 
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Bottom-Up Search 
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Bottom-Up Search 
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Bottom-Up Search 
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Bottom-Up Search  
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Bottom-Up Search 
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Top-Down and Bottom-Up 
� Top-down 
◦ Only searches for trees that can be 

answers (i.e. S’s) 
◦ But also suggests trees that are not 

consistent with any of the words 
� Bottom-up 
◦ Only forms trees consistent with the 

words 
◦ But suggests trees that make no sense 

globally 
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Control 
� Of course, in both cases we left out 

how to keep track of the search space 
and how to make choices 
◦ Which node to try to expand next 
◦ Which grammar rule to use to expand a 

node 
� One approach is called backtracking. 
◦ Make a choice, if it works out then fine 
◦  If not then back up and make a different 

choice 
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Problems 
� Even with the best filtering, backtracking 

methods are doomed because of two 
inter-related problems 
◦ Ambiguity and search control (choice) 
◦  Shared subproblems 
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Ambiguity 
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Shared Sub-Problems 
� No matter what kind of search (top-

down or bottom-up or mixed) that we 
choose... 
◦ We can’t afford to redo work we’ve 

already done. 
◦ Without some help naïve backtracking will 

lead to such duplicated work. 
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Shared Sub-Problems 
�  Consider 
◦  A flight from Indianapolis 

to Houston on TWA 
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Sample L1 Grammar 
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Shared Sub-Problems 
�  Assume a top-down parse that has 

already expanded the NP rule (dealing 
with the Det)  

� Now its making choices among the 
various Nominal rules 

�  In particular, between these two 
◦  Nominal -> Noun 
◦  Nominal -> Nominal PP 

�  Statically choosing the rules in this order 
leads to the following bad behavior... 
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Shared Sub-Problems 
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Shared Sub-Problems 
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Shared Sub-Problems 
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Shared Sub-Problems 
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Dynamic Programming 
�  DP search methods fill tables with partial results 

and thereby 
◦  Avoid doing avoidable repeated work 
◦  Solve exponential problems in polynomial time (well not 

really) 
◦  Efficiently store ambiguous structures with shared sub-

parts. 
�  We’ll cover two approaches that roughly 

correspond to top-down and bottom-up 
approaches. 
◦  CKY 
◦  Earley 
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CKY Parsing 

� First we’ll limit our grammar to epsilon-
free, binary rules (more on this later) 

� Consider the rule A  → BC 
◦  If there is an A somewhere in the input 

generated by this rule then there must be a 
B followed by a C in the input. 
◦  If the A spans from i to j in the input then 

there must be some k st. i<k<j 
�  In other words, the B splits from the C someplace 

after the i and before the j. 
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CKY 
� Build a table so that an A spanning 

from i to j in the input is placed in cell 
[i,j] in the table. 
◦  So a non-terminal spanning an entire 

string will sit in cell [0, n] 
�  Hopefully it will be an S 

� Now we know that the parts of the A 
must go from i to k and from k to j, 
for some k 
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CKY 
� Meaning that for a rule like A → B C we 

should look for a B in [i,k] and a C in 
[k,j]. 

�  In other words, if we think there might 
be an A spanning i,j in the input… AND  

   A → B C is a rule in the grammar THEN 
�  There must be a B in [i,k] and a C in 

[k,j] for some k such that i<k<j 
 
What about the B and the C? 
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CKY 
� So to fill the table loop over the cells 

[i,j] values in some systematic way 
◦ Then for each cell, loop over the 

appropriate k values to search for things 
to add. 
◦ Add all the derivations that are possible 

for each [i,j] for each k 
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CKY Table 
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CKY Algorithm 

What’s the complexity of this? 
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Example 
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Example 

Filling column 5 



Example 
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� Filling column 5 corresponds to processing 
word 5, which is Houston. 
◦  So j is 5. 
◦  So i goes from 3 to 0 (3,2,1,0) 
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Example 
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Example 
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Example 
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Example 



Example 
� Since there’s an S in [0,5] we have a 

valid parse. 
� Are we done?  We we sort of left 

something out of the algorithm 
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CKY Notes 
� Since it’s bottom up, CKY imagines a lot of 

silly constituents. 
◦  Segments that by themselves are constituents 

but cannot really occur in the context in which 
they are being suggested. 
◦ To avoid this we can switch to a top-down 

control strategy 
◦ Or we can add some kind of filtering that 

blocks constituents where they can not happen 
in a final analysis. 
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CKY Notes 
� We arranged the loops to fill the table 

a column at a time, from left to right, 
bottom to top.  
◦ This assures us that whenever we’re filling 

a cell, the parts needed to fill it are 
already in the table (to the left and below) 
◦  It’s somewhat natural in that it processes 

the input a left to right a word at a time 
�  Known as online 

 



Earley Parsing 

� Allows arbitrary CFGs 
�  Where CKY is bottom-up, Earley is top-down 
�  Fills a table in a single sweep over the 

input words 
◦ Table is length N+1; N is number of words 
◦ Table entries represent 
�  Completed constituents and their locations 
�  In-progress constituents 
�  Predicted constituents 
 



Dynamic Programming 

� A standard T-D parser would reanalyze A 
FLIGHT 4 times, always in the same way 

� A DYNAMIC PROGRAMMING algorithm 
uses a table (the CHART)  to avoid 
repeating work 

� The Earley algorithm also 
◦ Does not suffer from the left-recursion 

problem 
◦  Solves an exponential problem in O(n3) 



The Chart 
�  The Earley algorithm uses a table (the CHART) of size 

N+1, where N is the length of the input 
◦  Table entries sit in the `gaps’ between words 

�  Each  entry  in the chart  is a list of  
◦  Completed constituents 
◦  In-progress constituents 
◦  Predicted constituents 

�  All three types of objects are represented in the same 
way as STATES 



THE CHART:  
GRAPHICAL REPRESENTATION 



States 
� A state encodes two types of information: 
◦ How much of a certain rule has been 

encountered in the input 
◦ Which positions are covered 
◦ A à α, [X,Y] 

� DOTTED RULES 
◦ VP à V NP • 
◦ NP à Det • Nominal 
◦  S à • VP 



Examples 



Success 

� The parser has succeeded if entry N+1 of 
the chart contains the state 
◦  S à α •, [0,N] 



THE ALGORITHM 

� The algorithm loops through the input 
without backtracking, at each step 
performing three operations: 
◦  PREDICTOR: add predictions to the chart 
◦ COMPLETER: Move the dot to the right when 

looked-for constituent is  found 
◦  SCANNER: read in the next input word 



THE ALGORITHM: CENTRAL LOOP 



EARLEY ALGORITHM:  
THE THREE OPERATORS 



EXAMPLE, AGAIN 



EXAMPLE:  
BOOK THAT FLIGHT 



EXAMPLE:  
BOOK THAT FLIGHT (II) 



EXAMPLE:  
BOOK THAT FLIGHT (III) 



EXAMPLE:  
BOOK THAT FLIGHT (IV) 



Graphically 



Earley 

� As with most dynamic programming 
approaches, the answer is found by 
looking in the table in the right place. 

�  In this case, there should be an S state in 
the final column that spans from 0 to n+1 
and is complete. 

�  If that’s the case you’re done. 
◦  S –> α · [0,n+1]	  



Earley Algorithm 
� March through chart left-to-right. 
� At each step, apply 1 of 3 operators 
◦  Predictor 
�  Create new states representing top-down 

expectations 
◦  Scanner 
�  Match word predictions (rule with word after dot) 

to words 
◦ Completer 
�  When a state is complete, see what rules were 

looking for that completed constituent 



Earley’s example 1 
Predict - Scan- Complete 

S -> NP . VP 
NP -> NP . PP
VP -> . V NP
VP -> . VP PP 
PP -> . P NP 
NP -> John . 
NP -> . Sue 
NP -> . Denver 
V -> . called 
V ->.  sue 
P -> . from 

John called Sue from Denver 
S -> . NP VP 
NP -> . NP PP
P -> . V NP
VP -> . VP PP 
PP -> . P NP 
NP -> . John 
NP -> . Sue 
NP -> . Denver 
V -> . called 
V ->.  sue 
P -> . from 

S -> . NP VP 
NP -> . NP PP
NP -> . John 
NP -> . Sue 
NP -> . Denver 



Earley’s example 2 
John called Sue from 
Denver 

S -> NP . VP 
NP -> NP . PP
VP -> . V NP
VP -> . VP PP 
PP -> . P NP 
V -> . called 
V ->.  sue 
P -> . from 

S -> NP . VP 
NP -> NP . PP
VP -> . V NP
VP -> . VP PP 
PP -> . P NP 
V -> . called 
V ->.  sue 
P -> . from 

S -> NP . VP 
NP -> NP . PP
VP ->  V . NP
 
V ->  called . 



Earley’s example 3 
John called Sue from 
Denver 

S -> NP  VP . 
S -> NP . VP 
NP -> NP . PP
VP ->  V NP .
VP ->  VP .  
PP 
NP ->  Sue . 

S -> NP . VP 
NP ->  NP . PP
VP ->  V . NP
VP -> . VP PP 
PP -> . P NP 
NP -> . John  
NP -> . Sue 
NP -> . Denver 

 
NP -> . Sue 



Earley’s example 4 
John called Sue from Denver 

S -> NP . VP 
NP -> NP . PP
VP ->  V . NP
VP ->  VP . PP 
PP -> . P NP 
P -> . from 
 
 

 
P -> . from 

S -> NP . VP 
NP -> NP . PP
VP ->  VP . PP 
PP ->  P . NP 
P ->  from . 
 
 

NP -> . John 
NP -> . Sue 
NP -> . Denver 

 
NP -> . 
Denver 

NP ->  Denver . 
PP ->  P  NP . 
NP -> NP  PP .
VP ->  VP  PP .
VP ->  V  NP . 
S -> NP   VP . 
 
 
 
 



Predictor 
�  Given a state 
◦  With a non-terminal to right of dot 
◦  That is not a part-of-speech category 
◦  Create a new state for each expansion of the non-

terminal 
◦  Place these new states into same chart entry as 

generated state, beginning and ending where 
generating state ends.  
◦  So predictor looking at 
�  S -> . VP [0,0]   
◦    results in 
�  VP -> . Verb [0,0] 
�  VP -> . Verb NP [0,0] 



Scanner 
�  Given a state 
◦  With a non-terminal to right of dot 
◦  That is a part-of-speech category 
◦  If the next word in the input matches this part-of-speech 
◦  Create a new state with dot moved over the non-terminal 
◦  So scanner looking at 

�  VP -> . Verb NP [0,0] 

◦  If the next word, “book”, can be a verb, add new state: 
�  VP -> Verb . NP [0,1] 

◦  Add this state to chart entry following current one 
◦  Note: Earley algorithm uses top-down input to disambiguate 

POS! Only POS predicted by some state can get added to 
chart! 



Completer 
�  Applied to a state when its dot has reached right end of 

role. 
�  Parser has discovered a category over some span of input. 
�  Find and advance all previous states that were looking for 

this category 
◦  copy state, move dot, insert in current chart entry 

�  Given: 
◦  NP -> Det Nominal . [1,3] 
◦  VP -> Verb. NP [0,1] 

�  Add 
◦  VP -> Verb NP . [0,3] 



Earley: how do we know we are done? 

� How do we know when we are done? 
�  Find an S state in the final column that 

spans from 0 to n+1 and is complete. 
�  If that’s the case you’re done. 
◦  S –> α · [0,n+1]	  



Earley 

�  So sweep through the table from 0 to n
+1… 
◦ New predicted states are created by starting 

top-down from S 
◦ New incomplete states are created by 

advancing existing states as new constituents 
are discovered 
◦ New complete states are created in the same 

way.  



Earley 

�  More specifically… 
1.  Predict all the states you can upfront 
2.  Read a word 

1.  Extend states based on matches 
2.  Add new predictions 
3.  Go to 2 

3.  Look at N+1 to see if you have a winner 



Example 

� Book that flight 
� We should find… an S from 0 to 3 that is 

a completed state… 
 



Example 



Example 



Example 



Details 

� What kind of algorithms did we just 
describe (both Earley and CKY) 
◦ Not parsers – recognizers 
�  The presence of an S state with the right attributes 

in the right place indicates a successful recognition. 
�  But no parse tree… no parser 
�  That’s how we solve (not) an exponential problem 

in polynomial time 



Back to Ambiguity 

� Did we solve it? 



Ambiguity 



Converting Earley from Recognizer to Parser 

� With the addition of a few pointers we 
have a parser 

� Augment the “Completer” to point to 
where we came from. 



Augmenting the chart with structural information 

S8 
S9 

S10 

S11 

S13 
S12 

S8 

S9 
S8 



Retrieving Parse Trees from Chart 

�  All the possible parses for an input are in the 
table 

�  We just need to read off all the backpointers 
from every complete S in the last column of the 
table 

�  Find all the S -> X .  [0,N+1] 
�  Follow the structural traces from the 

Completer 
�  Of course, this won’t be polynomial time, since 

there could be an exponential number of trees 
�  So we can at least represent ambiguity 

efficiently 



Statistical Parsing 
�  Statistical parsing uses a probabilistic model of 

syntax in order to assign probabilities to each 
parse tree. 

�  Provides principled approach to resolving 
syntactic ambiguity. 

�  Allows supervised learning of parsers from tree-
banks of parse trees provided by human 
linguists. 

�  Also allows unsupervised learning of parsers 
from unannotated text, but the accuracy of such 
parsers has been limited. 
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Probabilistic Context Free Grammar 
(PCFG) 
�  A PCFG is a probabilistic version of a CFG 

where each production has a probability. 
�  Probabilities of all productions rewriting a 

given non-terminal must add to 1, defining a 
distribution for each non-terminal. 

�  String generation is now probabilistic where 
production probabilities are used to non-
deterministically select a production for 
rewriting a given non-terminal. 



PCFGs	  –	  Nota3on	  
� w1n	  =	  w1	  …	  wn	  	  =	  the	  word	  sequence	  from	  1	  
to	  n	  (sentence	  of	  length	  n)	  	  

� wab	  =	  the	  subsequence	  wa	  …	  wb	  	  	  
� Nj

ab
	  	  =	  the	  nonterminal	  Nj	  domina3ng	  wa	  …	  wb	  	  

	  
	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Nj	  

	  	  	  	  	  	  	  
	  	  	  	  	  	  	   	   	  	  	  	  	  	  	  	  	  wa	  …	  wb	  
�  We’ll	  write	  P(Ni	  	  →	  ζj)	  to	  mean	  	  	  	  P(Ni	  →	  ζj	  |	  Ni	  )	  
� We’ll	  want	  to	  calculate	  maxt	  P(t	  ⇒*	  wab)	  



The	  probability	  of	  trees	  and	  strings	  
�  P(w1n,	  t)	  -‐-‐	  The	  probability	  of	  tree	  is	  the	  
product	  of	  the	  probabili3es	  of	  the	  rules	  used	  
to	  generate	  it.	  

	  
	  
�  P(w1n)	  -‐-‐	  The	  probability	  of	  the	  string	  is	  the	  
sum	  of	  the	  probabili3es	  of	  the	  trees	  which	  
have	  that	  string	  as	  their	  yield	  
	  
	  	  	  	  P(w1n)	  =	  Σt	  P(w1n,	  t)	  	  where	  t	  is	  a	  parse	  of	  w1n	  	  

∏∏
∈→=∈→=

=
twXRtABXR
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Example:  A Simple PCFG  
(in Chomsky Normal Form) 

S      →    NP  VP       1.0      

VP    →    V  NP         0.7 
VP    →    VP  PP        0.3 

PP    →   P  NP          1.0 

P      →   with           1.0 

V      →  saw            1.0 

 NP  →    NP PP             0.4 

 NP   →   astronomers  0.1          
 NP   →   ears               0.18 

 NP   →   saw                0.04 

 NP   →   stars              0.18 

 NP   →   telescope        0.1 





=)( 1tP





Tree	  and	  String	  Probabili3es	  	  
•  w15   = astronomers saw stars with ears 
•  P(t1)     = 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18  
                     * 1.0 * 1.0 * 0.18 
                =  0.0009072 
•  P(t2)     = 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18 
                     * 1.0 * 1.0 * 0.18 
                = 0.0006804  
•  P(w15)  =      P(t1)      +     P(t2) 
             = 0.0009072 + 0.0006804 

                = 0.0015876  



Simple PCFG for ATIS English 

S → NP VP                      
S → Aux NP VP                
S → VP                            
NP → Pronoun 
NP → Proper-Noun 
NP → Det Nominal 
Nominal → Noun 
Nominal → Nominal Noun 
Nominal → Nominal PP 
VP → Verb 
VP → Verb NP 
VP → VP PP 
PP → Prep NP 

Grammar 
0.8 
0.1 
0.1 
0.2 
0.2 
0.6 
0.3 
0.2 
0.5 
0.2 
0.5 
0.3 
1.0 

Prob 

+ 

+ 

+ 

+ 

1.0 

1.0 

1.0 

1.0 

Det → the | a   | that | this 
            0.6  0.2  0.1    0.1 
Noun → book | flight | meal | money 
                0.1     0.5      0.2     0.2 
Verb → book | include | prefer 
               0.5      0.2        0.3 
Pronoun → I    | he | she | me 
                   0.5  0.1  0.1    0.3 
Proper-Noun → Houston | NWA 
                              0.8         0.2 
Aux → does 
             1.0 
Prep → from | to   | on | near | through 
             0.25  0.25  0.1    0.2     0.2 

Lexicon 
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Sentence Probability 
�  Assume productions for each node are chosen 

independently. 
�  Probability of derivation is the product of the 

probabilities of its productions. 
P(D1) = 0.1 x 0.5 x 0.5 x 0.6 x 0.6 x  
              0.5 x 0.3 x 1.0 x 0.2 x 0.2 x  
              0.5 x 0.8 
               =  0.0000216 

D1 S 

VP 

Verb          NP 
     Det    Nominal 

Nominal     PP 

book 

Prep        NP 
through 

Houston 
Proper-Noun 

the 

flight 
Noun 

0.5 

0.5 
0.6 

0.6 0.5 

1.0 

0.2 
0.3 

0.5 0.2 

0.8 

0.1 



Syntactic Disambiguation 
�  Resolve ambiguity by picking most probable 

parse tree. 

139 
139 

D2 

VP 

Verb          NP 
     Det    Nominal book 

Prep        NP 
through 

Houston 
Proper-Noun 

the 
flight 
Noun 

0.5 

0.5 
0.6 

0.6 1.0 

0.2 
0.3 

0.5 0.2 

0.8 

S 

VP 
0.1 

PP 

0.3 

P(D2) = 0.1 x 0.3 x 0.5 x 0.6 x 0.5 x 
              0.6 x 0.3 x 1.0 x 0.5 x 0.2 x 
              0.2 x 0.8 
               =  0.00001296 



Sentence Probability 
� Probability of a sentence is the sum of the 

probabilities of all of its derivations. 

140 

P(“book the flight through Houston”) =  
P(D1) + P(D2) = 0.0000216 + 0.00001296 
                       = 0.00003456 
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Three Useful PCFG Tasks 
� Observation likelihood: To classify and order 

sentences. 
� Most likely derivation: To determine the 

most likely parse tree for a sentence. 
� Maximum likelihood training: To train a 

PCFG to fit empirical training data. 



PCFG: Most Likely Derivation 
� There is an analog to the Viterbi algorithm 

to efficiently determine the most probable 
derivation (parse tree) for a sentence. 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

PCFG  
Parser 

John liked the dog in the pen. 
S 

NP           VP 

John       V     NP          PP 

liked    the dog  in the pen X 
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PCFG: Most Likely Derivation 
� There is an analog to the Viterbi algorithm 

to efficiently determine the most probable 
derivation (parse tree) for a sentence. 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

PCFG  
Parser 

John liked the dog in the pen. 
S 

NP           VP 

John       V     NP  

liked    the dog  in the pen 



Probabilistic CKY 
� CKY can be modified for PCFG parsing 

by including in each cell a probability for 
each non-terminal. 

� Cell[i,j] must retain the most probable 
derivation of each constituent (non-
terminal) covering words i +1 through j 
together with its associated probability. 

� When transforming the grammar to CNF, 
must set production probabilities to 
preserve the probability of derivations. 



 Probabilistic Grammar Conversion 

S → NP VP 
S → Aux NP VP 
 
S → VP 
 
 
 
NP → Pronoun 
 
NP → Proper-Noun 
 
NP → Det Nominal 
Nominal → Noun  
 
Nominal → Nominal Noun 
Nominal → Nominal PP 
VP → Verb 
 
VP → Verb NP 
VP → VP PP 
PP → Prep NP 

Original Grammar Chomsky Normal Form 
S → NP VP 
S → X1 VP 
X1 → Aux NP 
S → book | include | prefer 
          0.01     0.004    0.006 
S → Verb NP 
S → VP PP 
NP →  I   |  he  |  she |  me 
          0.1   0.02  0.02    0.06 
NP → Houston | NWA 
             0.16           .04 
NP → Det Nominal 
Nominal → book | flight | meal | money 
                      0.03    0.15   0.06     0.06 
Nominal → Nominal Noun 
Nominal → Nominal PP 
VP → book | include | prefer 
             0.1      0.04        0.06 
VP → Verb NP 
VP → VP PP 
PP → Prep NP 

0.8 
0.1 
 
0.1 
 
 
 
0.2 
 
0.2 
 
0.6 
0.3 
 
0.2 
0.5 
0.2 
 
0.5 
0.3 
1.0 

0.8 
0.1 
1.0 
 
 
0.05 
0.03 
 
 
 
 
0.6 
 
 
0.2 
0.5 
 
 
0.5 
0.3 
1.0 



Probabilistic CKY Parser 

146 

  Book       the        flight    through  Houston 

S :.01, VP:.1,  
Verb:.5  
Nominal:.03 
Noun:.1 

Det:.6 

 
Nominal:.15 
Noun:.5 

None 

 
NP:.6*.6*.15 
     =.054 



Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  
Verb:.5  
Nominal:.03 
Noun:.1 

Det:.6 

 
Nominal:.15 
Noun:.5 

None 

 
NP:.6*.6*.15 
     =.054 

 
VP:.5*.5*.054 
     =.0135 



Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  
Verb:.5  
Nominal:.03 
Noun:.1 

Det:.6 

 
Nominal:.15 
Noun:.5 

None 

 
NP:.6*.6*.15 
     =.054 

VP:.5*.5*.054 
     =.0135 

S:.05*.5*.054 
     =.00135 



Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  
Verb:.5  
Nominal:.03 
Noun:.1 

Det:.6 

 
Nominal:.15 
Noun:.5 

None 

 
NP:.6*.6*.15 
     =.054 

VP:.5*.5*.054 
     =.0135 

S:.05*.5*.054 
     =.00135 

None 

None 

None 

Prep:.2 



Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  
Verb:.5  
Nominal:.03 
Noun:.1 

Det:.6 

 
Nominal:.15 
Noun:.5 

None 

 
NP:.6*.6*.15 
     =.054 

VP:.5*.5*.054 
     =.0135 

S:.05*.5*.054 
     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.
8 

PP:1.0*.2*.16 
       =.032 



Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  
Verb:.5  
Nominal:.03 
Noun:.1 

Det:.6 

 
Nominal:.15 
Noun:.5 

None 

 
NP:.6*.6*.15 
     =.054 

VP:.5*.5*.054 
     =.0135 

S:.05*.5*.054 
     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.
8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 



Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  
Verb:.5  
Nominal:.03 
Noun:.1 

Det:.6 

 
Nominal:.15 
Noun:.5 

None 

 
NP:.6*.6*.15 
     =.054 

VP:.5*.5*.054 
     =.0135 

S:.05*.5*.054 
     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.
8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 

 
NP:.6*.6* 
       .0024 
     =.000864 



Probabilistic CKY Parser 

153 

  Book       the        flight    through  Houston 

S :.01, VP:.1,  
Verb:.5  
Nominal:.03 
Noun:.1 

Det:.6 

 
Nominal:.15 
Noun:.5 

None 

 
NP:.6*.6*.15 
     =.054 

VP:.5*.5*.054 
     =.0135 

S:.05*.5*.054 
     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.
8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 

 
NP:.6*.6* 
       .0024 
     =.000864 

S:.05*.5* 
     .000864 
   =.0000216 



Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  
Verb:.5  
Nominal:.03 
Noun:.1 

Det:.6 

 
Nominal:.15 
Noun:.5 

None 

 
NP:.6*.6*.15 
     =.054 

VP:.5*.5*.054 
     =.0135 

S:.05*.5*.054 
     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.
8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 

 
NP:.6*.6* 
       .0024 
     =.000864 

S:.0000216 

S:.03*.0135* 
    .032 
  =.00001296 



Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  
Verb:.5  
Nominal:.03 
Noun:.1 

Det:.6 

 
Nominal:.15 
Noun:.5 

None 

 
NP:.6*.6*.15 
     =.054 

VP:.5*.5*.054 
     =.0135 

S:.05*.5*.054 
     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.
8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 

 
NP:.6*.6* 
       .0024 
     =.000864 

S:.0000216 
Pick most probable 
parse, i.e. take max to 
combine probabilities 
of multiple derivations 
of each constituent in 
each cell. 
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PCFG: Observation Likelihood 
�  There is an analog to Forward algorithm for 

HMMs called the Inside algorithm for efficiently 
determining how likely a string is to be produced 
by a PCFG. 

�  Can use a PCFG as a language model to choose 
between alternative sentences for speech 
recognition or machine translation.  

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

The dog big barked. 

The big dog barked 

O1 

O2 

? 

? 

P(O2 | English) > P(O1 | English) ? 



Inside Algorithm 
� Use CKY probabilistic parsing algorithm 

but combine probabilities of multiple 
derivations of any constituent using 
addition instead of max. 

157 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  
Verb:.5  
Nominal:.03 
Noun:.1 

Det:.6 

 
Nominal:.15 
Noun:.5 

None 

 
NP:.6*.6*.15 
     =.054 

VP:.5*.5*.054 
     =.0135 

S:.05*.5*.054 
     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.
8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 

 
NP:.6*.6* 
       .0024 
     =.000864 

S:.0000216 

S:..00001296 

Probabilistic CKY Parser  
for Inside Computation 



159 

  Book       the        flight    through  Houston 

S :.01, VP:.1,  
Verb:.5  
Nominal:.03 
Noun:.1 

Det:.6 

 
Nominal:.15 
Noun:.5 

None 

 
NP:.6*.6*.15 
     =.054 

VP:.5*.5*.054 
     =.0135 

S:.05*.5*.054 
     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.
8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 

 
NP:.6*.6* 
       .0024 
     =.000864 

   +.0000216 
   =.00003456 

S: .00001296 Sum probabilities 
of multiple derivations 
of each constituent in 
each cell. 

Probabilistic CKY Parser  
for Inside Computation 
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PCFG: Supervised Training 
�  If parse trees are provided for training sentences, a 

grammar and its parameters can be can all be 
estimated directly from counts accumulated from the 
tree-bank (with appropriate smoothing). 

. 

. 

. 

Tree Bank 

Supervised 
PCFG 
Training 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

S 

NP           VP 

John       V     NP          PP 

put    the dog  in the pen 

S 

NP           VP 

John       V     NP          PP 

put    the dog  in the pen 



Estimating Production Probabilities 
� Set of production rules can be taken directly 

from the set of rewrites in the treebank. 
� Parameters can be directly estimated from 

frequency counts in the treebank. 
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PCFG: Maximum Likelihood 
Training 

�  Given a set of sentences, induce a grammar that 
maximizes the probability that this data was 
generated from this grammar. 

�  Assume the number of non-terminals in the 
grammar is specified. 

�  Only need to have an unannotated set of 
sequences generated from the model. Does not 
need correct parse trees for these sentences. In this 
sense, it is unsupervised. 
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PCFG: Maximum Likelihood 
Training 

John ate the apple 
A dog bit Mary 
Mary hit the dog 
John gave Mary the cat. 
 
 

. 

. 

. 

Training Sentences 

PCFG 
Training 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 



Inside-Outside 
�  The Inside-Outside algorithm is a version of EM for 

unsupervised learning of a PCFG. 
◦  Analogous to Baum-Welch (forward-backward) for HMMs 

�  Given the number of non-terminals, construct all possible 
CNF productions with these non-terminals and observed 
terminal symbols. 

�  Use EM to iteratively train the probabilities of these 
productions to locally maximize the likelihood of the data. 
◦  See Manning and Schütze text for details 

�  Experimental results are not impressive, but recent work 
imposes additional constraints to improve unsupervised 
grammar learning. 
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Vanilla PCFG Limitations 
�  Since probabilities of productions do not rely on 

specific words or concepts, only general 
structural disambiguation is possible (e.g. prefer 
to attach PPs to Nominals). 

�  Consequently, vanilla PCFGs cannot resolve 
syntactic ambiguities that require semantics to 
resolve, e.g. ate with fork vs. meatballs. 

�  In order to work well, PCFGs must be 
lexicalized, i.e. productions must be specialized 
to specific words by including their head-word 
in their LHS non-terminals (e.g. VP-ate). 



Example of Importance of 
Lexicalization 

�  A general preference for attaching PPs to NPs 
rather than VPs can be learned by a vanilla PCFG. 

�  But the desired preference can depend on specific 
words. 
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S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

PCFG  
Parser 

S 

NP           VP 

John       V     NP          PP 

put    the dog  in the pen 

John put the dog in the pen. 
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Example of Importance of 
Lexicalization 

�  A general preference for attaching PPs to NPs 
rather than VPs can be learned by a vanilla PCFG. 

�  But the desired preference can depend on specific 
words. 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

PCFG  
Parser 

S 

NP           VP 

John       V     NP  

put    the dog  in the pen X 
John put the dog in the pen. 



Head Words 
�  Syntactic phrases usually have a word in them 

that is most “central” to the phrase. 
�  Linguists have defined the concept of a lexical 

head of a phrase. 
�  Simple rules can identify the head of any phrase 

by percolating head words up the parse tree. 
◦  Head of a VP is the main verb 
◦  Head of an NP is the main noun 
◦  Head of a PP is the preposition 
◦  Head of a sentence is the head of its VP 



Lexicalized Productions 
�  Specialized productions can be generated by 

including the head word and its POS of each non-
terminal as part of that non-terminal’s symbol. 

S 

VP 

VBD          NP 
     DT    Nominal 

Nominal   PP 

liked 

IN            NP 

in 

the 

dog 
NN 

     DT    Nominal 

NN the 

pen 

NNP 

NP 

John 

pen-NN 

pen-NN 

in-IN dog-NN 

dog-NN 

dog-NN 

liked-VBD 

liked-VBD 

John-NNP 

Nominaldog-NN → Nominaldog-NN PPin-IN  



Lexicalized Productions 

S 

VP 

VP                             PP 

     DT    Nominal put 

IN            NP 

in 

the 

dog 
NN 

     DT    Nominal 

NN the 

pen 

NNP 

NP 

John 
pen-NN 

pen-NN 

in-IN 

dog-NN 

dog-NN 

put-VBD 

put-VBD 

John-NNP 

NP VBD 

put-VBD 

VPput-VBD → VPput-VBD PPin-IN  



Parameterizing Lexicalized 
Productions 
�  Accurately estimating parameters on such a 

large number of very specialized productions 
could require enormous amounts of treebank 
data. 

�  Need some way of estimating parameters for 
lexicalized productions that makes reasonable 
independence assumptions so that accurate 
probabilities for very specific rules can be 
learned. 



Collins Parser 
� Collins (1999) parser assumes a simple 

generative model of lexicalized 
productions. 

� Models productions based on context to 
the left and the right of the head daughter. 
◦ LHS → LnLn-1…L1H R1…Rm-1Rm  

� First generate the head (H) and then 
repeatedly generate left (Li) and right (Ri) 
context symbols until the symbol STOP is 
generated. 



Sample Production Generation 

VPput-VBD → VBDput-VBD NPdog-NN PPin-IN 
Note: Penn treebank tends to  
have fairly flat parse trees that  
produce long productions.  

VPput-VBD → VBDput-VBD NPdog-NN 
H L1 

STOP PPin-IN STOP 
R1 R2 R3 

PL(STOP | VPput-VBD) * PH(VBD | Vpput-VBD)*    
                                              PR(NPdog-NN | VPput-VBD)* 
                                                  PR(PPin-IN | VPput-VBD) * PR(STOP | VPput-VBD) 
 



Count(PPin-IN right of head in a VPput-VBD production) 

Estimating Production Generation 
Parameters 

�  Estimate PH, PL, and PR parameters from treebank data. 

PR(PPin-IN | VPput-VBD) = 
Count(symbol right of head in a VPput-VBD) 

Count(NPdog-NN right of head in a VPput-VBD production) 
PR(NPdog-NN | VPput-VBD) = 

•  Smooth estimates by linearly interpolating with 
simpler models conditioned on just POS tag or no 
lexical info. 

smPR(PPin-IN | VPput-VBD) = λ1 PR(PPin-IN | VPput-VBD)  
                                               + (1- λ1) (λ2 PR(PPin-IN | VPVBD) + 
                                                                (1- λ2) PR(PPin-IN | VP))  

Count(symbol right of head in a VPput-VBD) 



Missed Context Dependence 
� Another problem with CFGs is that which 

production is used to expand a non-
terminal is independent of its context. 

� However, this independence is frequently 
violated for normal grammars. 
◦ NPs that are subjects are more likely to be 

pronouns than NPs that are objects. 

175 



Splitting Non-Terminals 
� To provide more contextual information, 

non-terminals can be split into multiple 
new non-terminals based on their parent in 
the parse tree using parent annotation. 
◦ A subject NP becomes NP^S since its parent 

node is an S. 
◦ An object NP becomes NP^VP since its parent 

node is a VP 

176 



Parent Annotation Example 
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S 

VP 

VBD          NP 
     DT    Nominal 

Nominal   PP 

liked 

IN            NP 

in 

the 

dog 
NN 

     DT    Nominal 
NN the 

pen 

NNP 

NP 

John 

^NP 

^PP 

^Nominal ^Nominal 

^NP 

^VP 

^S ^S 

^Nominal 

^NP 

^PP 
^Nominal 

^NP 

^VP ^NP 

VP^S → VBD^VP  NP^VP 



Split and Merge  
�  Non-terminal splitting greatly increases the size of 

the grammar and the number of parameters that need 
to be learned from limited training data. 

�  Best approach is to only split non-terminals when it 
improves the accuracy of the grammar. 

�  May also help to merge some non-terminals to 
remove some un-helpful distinctions and learn more 
accurate parameters for the merged productions.  

�  Method: Heuristically search for a combination of 
splits and merges that produces a grammar that 
maximizes the likelihood of the training treebank. 

178 
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Treebanks 
�  English Penn Treebank: Standard corpus for 

testing syntactic parsing consists of 1.2 M words 
of text from the Wall Street Journal (WSJ). 

�  Typical to train on about 40,000 parsed 
sentences and test on an additional standard 
disjoint test set of 2,416 sentences. 

�  Chinese Penn Treebank: 100K words from the 
Xinhua news service. 

�  Other corpora existing in many languages, see 
the Wikipedia article “Treebank” 



First WSJ Sentence 

180 

( (S  
    (NP-SBJ  
      (NP (NNP Pierre) (NNP Vinken) ) 
      (, ,)  
      (ADJP  
        (NP (CD 61) (NNS years) ) 
        (JJ old) ) 
      (, ,) ) 
    (VP (MD will)  
      (VP (VB join)  
        (NP (DT the) (NN board) ) 
        (PP-CLR (IN as)  
          (NP (DT a) (JJ nonexecutive) (NN director) )) 
        (NP-TMP (NNP Nov.) (CD 29) ))) 
    (. .) )) 
 



WSJ Sentence with Trace (NONE) 
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( (S  
    (NP-SBJ (DT The) (NNP Illinois) (NNP Supreme) (NNP Court) ) 
    (VP (VBD ordered)  
      (NP-1 (DT the) (NN commission) ) 
      (S  
        (NP-SBJ (-NONE- *-1) ) 
        (VP (TO to)  
          (VP  
            (VP (VB audit)  
              (NP  
                (NP (NNP Commonwealth) (NNP Edison) (POS 's) ) 
                (NN construction) (NNS expenses) )) 
            (CC and)  
            (VP (VB refund)  
              (NP (DT any) (JJ unreasonable) (NNS expenses) )))))) 
    (. .) )) 
 



182 

Parsing Evaluation Metrics 
�  PARSEVAL metrics measure the fraction of the 

constituents that match between the computed and 
human parse trees.  If P is the system’s parse tree and 
T is the human parse tree (the “gold standard”): 
◦  Recall = (# correct constituents in P) / (# constituents in T) 
◦  Precision = (# correct constituents in P) / (# constituents in P) 

�  Labeled Precision and labeled recall require getting the 
non-terminal label on the constituent node correct to 
count as correct. 

�   F1 is the harmonic mean of precision and recall. 



Computing Evaluation Metrics 

Correct Tree T 
S 

VP 

Verb          NP 
     Det    Nominal 

Nominal     PP 

book 

Prep        NP 
through 

Houston 
Proper-Noun 

the 

flight 
Noun 

Computed Tree P 

VP 

Verb          NP 
     Det    Nominal book 

Prep        NP 
through 

Houston 
Proper-Noun 

the 
flight 
Noun 

S 

VP 

PP 

# Constituents: 12 # Constituents: 12 
# Correct Constituents: 10 

Recall = 10/12= 83.3% Precision = 10/12=83.3% F1 = 83.3% 
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Treebank Results 
�  Results of current state-of-the-art systems on the 

English Penn WSJ treebank are slightly greater than 
90% labeled precision and recall. 



Discriminative Parse Reranking 
�  Motivation: Even when the top-ranked parse 

not correct, frequently the correct parse is 
one of those ranked highly by a statistical 
parser. 

�  Use a discriminative classifier that is trained 
to select the best parse from the N-best 
parses produced by the original parser. 

�  Reranker can exploit global features of the 
entire parse whereas a PCFG is restricted to 
making decisions based on local info. 
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2-Stage Reranking Approach 
� Adapt the PCFG parser to produce an N-

best list of the most probable parses in 
addition to the most-likely one. 

� Extract from each of these parses, a set of 
global features that help determine if it is 
a good parse tree. 

� Train a discriminative classifier (e.g. 
logistic regression) using the best parse in 
each N-best list as positive and others as 
negative.    
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Parse Reranking 

187 

sentence      N-Best 
Parse Trees 

 
   PCFG Parser   

      Parse Tree 
        Feature 
     Extractor   

 Parse Tree 
Descriptions 

  Discriminative  
     Parse Tree 
      Classifier 

      Best           
Parse Tree 



Sample Parse Tree Features 
�  Probability of the parse from the PCFG. 
�  The number of parallel conjuncts. 
◦ “the bird in the tree and the squirrel on the ground” 
◦ “the bird and the squirrel in the tree” 

�  The degree to which the parse tree is right 
branching. 
◦  English parses tend to be right branching (cf. parse of 
“Book the flight through Houston”) 

�  Frequency of various tree fragments, i.e. specific 
combinations of 2 or 3 rules. 
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Evaluation of Reranking 
� Reranking is limited by oracle accuracy, 

i.e. the accuracy that results when an 
omniscient oracle picks the best parse 
from the N-best list.  

� Typical current oracle accuracy is around 
F1=97%  

� Reranking can generally improve test 
accuracy of current PCFG models a 
percentage point or two. 
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Other Discriminative Parsing 
� There are also parsing models that move 

from generative PCFGs to a fully 
discriminative model, e.g. max margin 
parsing (Taskar et al., 2004).  

� There is also a recent model that 
efficiently reranks all of the parses in the 
complete (compactly-encoded) parse 
forest, avoiding the need to generate an N-
best list (forest reranking, Huang, 2008). 
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Human Parsing 
�  Computational parsers can be used to predict human 

reading time as measured by tracking the time taken 
to read each word in a sentence. 

�  Psycholinguistic studies show that words that are 
more probable given the preceding lexical and 
syntactic context are read faster. 
◦  John put the dog in the pen with a lock. 
◦  John put the dog in the pen with a bone in the car. 
◦  John liked the dog in the pen with a bone. 

�  Modeling these effects requires an incremental 
statistical parser that incorporates one word at a 
time into a continuously growing parse tree. 
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Garden Path Sentences 
�  People are confused by sentences that seem to have a 

particular syntactic structure but then suddenly violate 
this structure, so the  listener is “lead down the 
garden path”. 
◦  The horse raced past the barn fell. 

�  vs. The horse raced past the barn broke his leg. 
◦  The complex houses married students. 
◦  The old man the sea. 
◦  While Anna dressed the baby spit up on the bed. 

�  Incremental computational parsers can try to predict 
and explain the problems encountered parsing such 
sentences. 
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Center Embedding 
�  Nested expressions are hard for humans to process 

beyond 1 or 2 levels of nesting. 
◦  The rat the cat chased died. 
◦  The rat the cat the dog bit chased died. 
◦  The rat the cat the dog the boy owned bit chased died. 

�  Requires remembering and popping incomplete 
constituents from a stack and strains human short-term 
memory. 

�  Equivalent “tail embedded” (tail recursive) versions 
are easier to understand since no stack is required. 
◦  The boy owned a dog that bit a cat that chased a rat that died. 
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Dependency Grammars 
�  An alternative to phrase-structure grammar is to 

define a parse as a directed graph between the words 
of a sentence representing dependencies between the 
words. 
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liked 

John dog 

pen 

in the 

the 

liked 

John dog 

pen 

in 
the 

the 

nsubj dobj 

det 

det 

Typed  
dependency 
parse 



Dependency Graph from Parse Tree 
�  Can convert a phrase structure parse to a dependency 

tree by making the head of each non-head child of a 
node depend on the head of the head child. 
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S 

VP 

VBD          NP 
     DT    Nominal 

Nominal   PP 

liked 

IN            NP 

in 

the 

dog 
NN 

     DT    Nominal 

NN the 

pen 

NNP 

NP 

John 

pen-NN 

pen-NN 

in-IN dog-NN 

dog-NN 

dog-NN 

liked-VBD 

liked-VBD 

John-NNP 

liked 

John dog 

pen 

in the 

the 



Unification Grammars 
�  In order to handle agreement issues more 

effectively, each constituent has a list of features 
such as number, person, gender, etc. which may or 
not be specified for a given constituent. 

�  In order for two constituents to combine to form a 
larger constituent, their features must unify, i.e. 
consistently combine into a merged set of features. 

�  Expressive grammars and parsers (e.g. HPSG) have 
been developed using this approach and have been 
partially integrated with modern statistical models 
of disambiguation. 
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Mildly Context-Sensitive Grammars 
�  Some grammatical formalisms provide a degree of 

context-sensitivity that helps capture aspects of NL 
syntax that are not easily handled by CFGs. 

�  Tree Adjoining Grammar (TAG) is based on 
combining tree fragments rather than individual 
phrases. 

�  Combinatory Categorial Grammar (CCG) consists of:  
◦  Categorial Lexicon that associates a syntactic and semantic 

category with each word. 
◦  Combinatory Rules that define how categories combine to 

form other categories. 
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Statistical Parsing Conclusions 
� Statistical models such as PCFGs allow 

for probabilistic resolution of ambiguities. 
� PCFGs can be easily learned from 

treebanks. 
� Lexicalization and non-terminal splitting 

are required to effectively resolve many 
ambiguities. 

� Current statistical parsers are quite 
accurate but not yet at the level of human-
expert agreement. 
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