
CS114 (Spring 2015) Homework 2

N-Gram Language Model

Due February 13, 2015

The overall goal of this assignment is for you to train the best language
model possible given the same limited amount of data. There will be no test
cases for you this time. The grade will depend on the correctness of your
implementation, the written report, and the perplexity on the blind test set.

You should first go on Latte and download the data sets. The tar file
should contain the training set and development set. The dataset is in one
sentence per line format, and each token is separated by a single blank space.
So you can simply use split function to tokenize each sentence.

Assignment

1. Show that PPM (W) = 2H(W) where PPM (W) is the perplexity of
language model M on the sequence of n words W and H(W) is the
cross entropy of M on W . (Include the solution in the report)

2. Show that PPM (W) = exp(− logPM (W)
n) where PM is the language

model. (Include the solution in the report)

3. Implement language models and come up with the best language model
possible given the datasets described above.

Note that if you train a trigram model, you must append two tokens
of <S> to each sentence before training. For example,

P(I like running) = P(I|<S> <S>) P(like|<S> I) P(running|I like)

Also, for simplicity of implementation, treat all punctuations as words.
Leave them as they are.

4. Write a short report on the language models that you have explored.
You should at least describe the following:

1

• The models that you have tried (e.g. 4-gram with simple inter-
polation)

• Perplexity on the development set for each model

• Comparison of different models you have tried.

5. Write a command-line program compute_perplexity.py that prints
out your name and the perplexity of the input file.

> python compute_perplexity.py dev-data.txt

Te Rutherford 3542

The input file is in one sentence per line format, and each token is
separated by a single blank space. Nikhil and I will run your language
model on the blind test set. You will be graded on the perplexity. You
must at least beat bigram model with add-one smoothing.

Submission Instruction

Submit on Latte the pdf-formatted report, your implementation of compute_perplexity.py,
and your language model file as required by compute_perplexity.py.

Tips and suggestions

• It is useful to know that

log
n∏

i=1

P (wi) =
n∑

i=1

logP (wi)

• After you turn the counts into the probabilities, you should store log-
probabilities. Remember that exp logP (w) = P (w), so it is easy to
convert back and forth between probaiblity and log probability.

• You should use this formula for computing perplexity:

PPM (W) = exp(− logPM (W)

n
)

because it uses log probability directly. Adding is much faster than
multiplying, and the product of probabilities will lead to numerical
underflow (the number too small to be represented by a Python float
value). The sum of log probabilities helps avoid this problem.

2

• Start small. Start with bigram with add-one smoothing and evaluate
it. From there, it is not too hard to expand to trigram or 4-gram.

• Good-Turing or Kneser-Ney models are excellent choices for improving
the performance. The models are described in detail in the book.

• It is OK if your model does not perform too too well compared to
your classmates at the end as long as we see in the report that you
have tried a good number of different models to make the performance
better.

• Do not train on the dev set ever. Instead, use it for tuning the inter-
polation weight, or deciding between 4-gram or 5-gram.

3

