
The Inside-Outside Algorithm

Michael Collins

1 Introduction

This note describes theinside-outside algorithm. The inside-outside algorithm has
very important applications to statistical models based oncontext-free grammars.
In particular, it is used in EM estimation of probabilistic context-free grammars,
and it is used in estimation of discriminative models for context-free parsing.

As we will see, the inside-outside algorithm has many similarities to the forward-
backward algorithm for hidden Markov models. It computes analogous quantities
to the forward and backward terms, for context-free trees.

2 Basic Definitions

This section gives some basic definitions. We first give definitions for context-
free grammars, and for a representation of parse trees. We then describepotential
functions over parse trees. The next section describes the quantitiescomputed by
the inside-outside algorithm, and the algorithm itself.

2.1 Context-Free Grammars, and Parse Trees

The set-up is as follows. Assume that we have some input sentence x1 . . . xn,
wheren is the length of the sentence. Assume in addition we have a context-free
grammar (CFG)G = (N,Σ, R, S) in Chomsky normal form, where:

• N is a finite set of non-terminal symbols.

• Σ is a finite set of terminal symbols.

• R is a finite set of rules. The grammar is in Chomsky normal form,so each
rule takes one of two forms: 1)A→ BC whereA,B,C are all non-terminal
symbols; 2)A→ x whereA is a non-terminal, andx is a terminal symbol.

• S ∈ N is a distinguished start symbol.

1



The previous class note on PCFGs (posted on the webpage) has full details of
context-free grammars. For the input sentencex1 . . . xn, the CFG defines a set of
possible parse trees, which we will denote asT .

Any parse treet ∈ T can be represented as a set of ofrule productions. Each
rule production can take one of two forms:

• 〈A → B C, i, k, j〉 whereA → B C is a rule in the grammar, andi, k, j
are indices such that1 ≤ i ≤ k < j ≤ n. A rule production of this form
specifies that the ruleA→ B C is seen with non-terminalA spanning words
xi . . . xj in the input string; non-terminalB spanning wordsxi . . . xk in the
input string; and non-terminalC spanning wordsxk+1 . . . xj in the input
string.

• 〈A, i〉 whereA is a non-terminal, andi is an index withi ∈ {1, 2, . . . n}. A
rule production of this form specifies that the ruleA→ xi is seen in a parse
tree, withA above thei’th word in the input string.

As an example, consider the following parse tree:
S

NP

D

the

N

woman

VP

V

saw

P

him
This tree contains the following rule productions:

S → NP VP, 1, 2, 4
NP → D N, 1, 1, 2
VP → V P, 3, 3, 4
D, 1
N, 2
V, 3
P, 4

2.2 Potential Functions

We now define potential functions over parse trees. For any rule productionr (of
the form〈A→ B C, i, k, j〉 or 〈A, i〉) we will useψ(r) to denote thepotential for
that rule. The potential functionψ(r) has the property thatψ(r) ≥ 0 for all rule
productionsr.

2



The potential for an entire treet is defined as follows:

ψ(t) =
∏

r∈t

ψ(r)

=





∏

〈A→B C,i,k,j〉∈t

ψ(A→ B C, i, k, j)



 ×





∏

〈A,i〉∈t

ψ(A, i)





Here we writer ∈ t if the parse treet contains the rule productionr. As an
example, consider the parse tree we gave earlier. The potential for that parse tree
would be

ψ(S → NP VP, 1, 2, 4) ×ψ(NP → D N, 1, 1, 2) ×ψ(VP → V P, 3, 3, 4)
×ψ(D, 1) ×ψ(N, 2) ×ψ(V, 3) ×ψ(P, 4)

Hence to calculate the potential for a parse tree we simply read off the rule produc-
tions in the parse tree, and multiply the individual rule potentials.

Note that the potential for an entire parse tree satisfiesψ(t) ≥ 0, because each
of the individual rule potentialsψ(r) satisfiesψ(r) ≥ 0.

In practice, the rule potentials might be defined in a number of ways. In one
setting, we might have a probabilistic CFG (PCFG), where each ruleα→ β in the
grammar has an associated parameterq(α→ β). This parameter can be interpreted
as the conditional probability of seeing the ruleα→ β, given that the non-terminal
α is being expanded. We would then define

ψ(A → B C, i, k, j) = q(A→ B C)

and
ψ(A, i) = q(A→ xi)

Under these definitions, for any treet, the potentialψ(t) =
∏

r∈t ψ(r) is simply
the probability for that parse tree under the PCFG.

As a second example, consider a conditional random field (CRF) style model
for parsing with CFGs (see the lecture slides from earlier inthe course). In this
case each rule productionr has a feature vectorφ(r) ∈ R

d, and in addition we
assume a parameter vectorv ∈ R

d. We can then define the potential functions as

ψ(r) = exp{v · φ(r)}

The potential function for an entire tree is then

ψ(t) =
∏

r∈t

ψ(r) =
∏

r∈t

exp{v · φ(r)} = exp{
∑

r∈t

v · φ(r)}

3



Note that this is closely related to the distribution definedby a CRF-style model:
in particular, under the CRF we have for any treet

p(t|x1 . . . xn) =
ψ(t)

∑

t∈T ψ(t)

whereT again denotes the set of all parse trees forx1 . . . xn under the CFG.

3 The Inside-Outside Algorithm

3.1 Quantities Computed by the Inside-Outside Algorithm

Given the definitions in the previous section, we now describe the quantities calcu-
lated by the inside-outside algorithm. The inputs to the algorithm are the following:

• A sentencex1 . . . xn, where eachxi is a word.

• A CFG (N,Σ, R, S) in Chomsky normal form.

• A potential functionψ(r) that maps any rule productionr of the form〈A→
B C, i, k, j〉 or 〈A, i〉 to a valueψ(r) ≥ 0.

As before, we defineT to be the set of all possible parse trees forx1 . . . xn
under the CFG, and we defineψ(t) =

∏

r∈t ψ(r) to be the potential function for
any tree.

Given these inputs, the inside-outside algorithm computesthe following quan-
tities:

1. Z =
∑

t∈T ψ(t).

2. For all rule productionsr,

µ(r) =
∑

t∈T :r∈t

ψ(t)

3. For all non-terminalsA ∈ N , for all indiciesi, j such that1 ≤ i ≤ j ≤ n,

µ(A, i, j) =
∑

t∈T :(A,i,j)∈t

ψ(t)

Here we write(A, i, j) ∈ t if the parse treet contains the terminalA span-
ning wordsxi . . . xj in the input. For example, in the example parse tree
given before, the following(A, i, j) triples are seen in the tree:〈S, 1, 4〉;
〈NP, 1, 2〉; 〈VP, 3, 4〉; 〈D, 1, 1〉; 〈N, 2, 2〉; 〈V, 3, 3〉; 〈P, 4, 4〉.

4



Note that there is a close correspondence between these terms, and the terms
computed by the forward-backward algorithm (see the previous notes).

In words, the quantityZ is the sum of potentials for all possible parse trees
for the inputx1 . . . xn. The quantityµ(r) for any rule productionr is the sum of
potentials for all parse trees that contain the rule production r. Finally, the quantity
µ(A, i, j) is the sum of potentials for all parse trees containing non-terminalA
spanning wordsxi . . . xj in the input.

We will soon see how these calculations can be applied withina particularly
context, namely EM-based estimation of the parameters of a PCFG. First, however,
we give the algorithm.

3.2 The Inside-Outside Algorithm

Figure 3.2 shows the inside-outside algorithm. The algorithm takes as its input a
sentence, a CFG, and a potential functionψ(r) that maps any rule productionr to
a valueψ(r) ≥ 0. As output, it returns values forZ, µ(A, i, j) andµ(r), wherer
can be any rule production.

The algorithm makes use of inside termsα(A, i, j) and outside termsβ(A, i, j).
In the first stage of the algorithm, theα(A, i, j) terms are calculated using a sim-
ple recursive definition. In the second stage, theβ(A, i, j) terms are calculated,
again using a relatively simple recursive definition. Note that the definition of the
β(A, i, j) terms depends on theα terms computed in the first stage of the algo-
rithm.

Theα andβ terms are analogous to backward and forward terms in the forward-
backward algorithm. The next section gives a full explanation of the inside and
outside terms, together with the justification for the algorithm.

3.3 Justification for the Inside-Outside Algorithm

We now give justification for the algorithm. We first give a precise definition of the
quantities that theα andβ terms correspond to, and describe how this leads to the
definitions of theZ andµ terms. We then show that the recursive definitions of the
α andβ terms are correct.

3.3.1 Interpretation of theα Terms

Again, takex1 . . . xn to be the input to the inside-outside algorithm. Before we
had definedT to be the set of all possible parse trees under the CFG for the input
sentence. In addition, define

T (A, i, j)

5



Inputs: A sentencex1 . . . xn, where eachxi is a word. A CFG(N,Σ, R, S) in Chomsky normal
form. A potential functionψ(r) that maps any rule productionr of the form〈A → B C, i, k, j〉 or
〈A, i〉 to a valueψ(r) ≥ 0.

Data structures:

• α(A, i, j) for anyA ∈ N , for any (i, j) such that1 ≤ i ≤ j ≤ n is the inside term for
(A, i, j).

• β(A, i, j) for anyA ∈ N , for any (i, j) such that1 ≤ i ≤ j ≤ n is the outside term for
(A, i, j).

Inside terms, base case:

• For all i ∈ {1 . . . n}, for all A ∈ N , setα(A, i, i) = ψ(A, i) if the ruleA → xi is in the
CFG, setα(A, i, i) = 0 otherwise.

Inside terms, recursive case:

• For allA ∈ N , for all (i, j) such that1 ≤ i < j ≤ n,

α(A, i, j) =
∑

A→B C∈R

j−1
∑

k=i

(ψ(A→ B C, i, k, j)× α(B, i, k)× α(C, k + 1, j))

Outside terms, base case:

• Setβ(S, 1, n) = 1. Setβ(A, 1, n) = 0 for all A ∈ N such thatA 6= S.

Outside terms, recursive case:

• For allA ∈ N , for all (i, j) such that1 ≤ i ≤ j ≤ n and(i, j) 6= (1, n),

β(A, i, j) =
∑

B→C A∈R

i−1
∑

k=1

(ψ(B → C A, k, i− 1, j)× α(C, k, i − 1)× β(B, k, j))

+
∑

B→A C∈R

n
∑

k=j+1

(ψ(B → A C, i, j, k)× α(C, j + 1, k)× β(B, i, k))

Outputs: Return

Z = α(S, 1, n)

µ(A, i, j) = α(A, i, j)× β(A, i, j)

µ(A, i) = µ(A, i, i)

µ(A→ B C, i, k, j) = β(A, i, j)× ψ(A→ B C, i, k, j)× α(B, i, k)× α(C, k + 1, j)

Figure 1: The inside-outside algorithm.

6



to be the set of all possible trees rooted in non-terminalA, and spanning words
xi . . . xj in the sentence. Note that under this definition,T = T (S, 1, n) (the full
set of parse trees for the input sentence is equal to the full set of trees rooted in the
symbolS, spanning wordsx1 . . . xn).

As an example, for the input sentencethe dog saw the man in the park, under
an appropriate CFG, one member ofT (NP, 4, 8) would be

NP

NP

D

the

N

man

PP

IN

in

NP

D

the

N

park
The setT (NP, 4, 8) would be the set of all possible parse trees rooted inNP,

spanning wordsx4 . . . x8 = the man in the park.
Eacht ∈ T (A, i, j) has an associated potential, defined in the same way as

before as
ψ(t) =

∏

r∈t

ψ(r)

We now claim the following: consider theα(A, i, j) terms calculated in the
inside-outside algorithm. Then

α(A, i, j) =
∑

t∈T (A,i,j)

ψ(t)

Thus the inside termα(A, i, j) is simply the sum of potentials for all trees spanning
wordsxi . . . xj, rooted in the symbolA.

3.3.2 Interpretation of the β Terms

Again, takex1 . . . xn to be the input to the inside-outside algorithm. Now, for any
non-terminalA, for any(i, j) such that1 ≤ i ≤ j ≤ n, define

O(A, i, j)

to be the set of alloutside trees with non-terminalA, and spanxi . . . xj.
To illustrate the idea of an outside tree, again consider an example where the

input sentence isthe dog saw the man in the park. Under an appropriate CFG, one
member ofT (NP, 4, 5) would be

7



S

NP

D

the

N

dog

VP

V

saw

NP

NP PP

IN

in

NP

D

the

N

park
This tree is rooted in the symbolS. The leafs of the tree form the sequence

x1 . . . x3 NP x6 . . . xn.
More generally, an outside tree for non-terminalA, with spanxi . . . xj , is a tree

with the following properties:

• The tree is rooted in the symbolS.

• Each rule in the tree is a valid rule in the underlying CFG (e.g., S -> NP
VP, NP -> D N, D -> the, etc.)

• The leaves of the tree form the sequencex1 . . . xi−1 A xj+1 . . . xn.

Each outside treet again has an associated potential, equal to

ψ(t) =
∏

r∈t

ψ(r)

We simply read off the rule productions in the outside tree, and take their product.
Again, recall that we definedO(A, i, j) to be the set of all possible outside

trees with non-terminalA and spanxi . . . xj. We now make the following claim.
Consider theβ(A, i, j) terms calculated by the inside-outside algorithm. Then

β(A, i, j) =
∑

t∈O(A,i,j)

ψ(t)

In words, the outside term for(A, i, j) is the sum of potentials for all outside trees
in the setO(A, i, j).

8



3.3.3 Putting theα and β Terms Together

We now give justification for theZ andµ terms calculated by the algorithm. First,
considerZ. Recall that we would like to compute

Z =
∑

t∈T

ψ(t)

and that the algorithm has the definition

Z = α(S, 1, n)

By definition, α(S, 1, n) is the sum of potentials for all trees rooted inS, span-
ning wordsx1 . . . xn—i.e., the sum of potentials for all parse trees of the input
sentence—so this definition is correct.

Next, recall that we would also like to compute

µ(A, i, j) =
∑

t∈T :(A,i,j)∈t

ψ(t)

and that the algorithm computes this as

µ(A, i, j) = α(A, i, j) × β(A, i, j)

How is this latter expression justified?
First, note that any tree with non-terminalA spanning wordsxi . . . xj can be

decomposed into an outside tree inO(A, i, j) and an inside tree inT (A, i, j). For
example, consider the example used above, with the triple(NP, 4, 5). One parse
tree that contains anNP spanning wordsx4 . . . x5 is

S

NP

D

the

N

dog

VP

V

saw

NP

NP

D

the

N

man

PP

IN

in

NP

D

the

N

park

9



This can be decomposed into the outside tree
S

NP

D

the

N

dog

VP

V

saw

NP

NP PP

IN

in

NP

D

the

N

park
together with the inside tree

NP

D

the

N

man
It follows that if we denote the outside tree byt1, the inside tree byt2, and the

full tree byt, we have
ψ(t) = ψ(t1)× ψ(t2)

More generally, we have

µ(A, i, j) =
∑

t∈T :(A,i,j)∈t

ψ(t) (1)

=
∑

t1∈O(A,i,j)

∑

t2∈T (A,i,j)

(ψ(t1)× ψ(t2)) (2)

=





∑

t1∈O(A,i,j)

ψ(t1)



×





∑

t2∈T (A,i,j)

ψ(t2)



 (3)

= α(A, i, j) × β(A, i, j) (4)

Eq. 1 follows by definition. Eq. 2 follows because any treet with non-terminalA
spanningxi . . . xj can be decomposed into a pair(t1, t2) wheret1 ∈ O(A, i, j),
andt2 ∈ T (A, i, j). Eq. 3 follows by simple algebra. Finally, Eq. 4 follows by the
definitions ofα(A, i, j) andβ(A, i, j).

A similar argument can be used to justify computing

µ(r) =
∑

t∈T :r∈t

ψ(t)

10



as

µ(A, i) = µ(A, i, i)

µ(A→ B C, i, k, j) = β(A, i, j) × ψ(A→ B C, i, k, j) × α(B, i, k) × α(C, k + 1, j)

For brevity the details are omitted.

4 The EM Algorithm for PCFGs

We now describe a very important application of the inside-outside algorithm: EM
estimation of PCFGs. The algorithm is given in figure 2.

The input to the algorithm is a set of training examplesx(i) for i = 1 . . . n, and
a CFG. Each training example is a sentencex

(i)
1 . . . x

(i)
li

, whereli is the length of

the sentence, and eachx(i)j is a word. The output from the algorithm is a parameter
q(r) for each ruler in the CFG.

The algorithm starts with initial parametersq0(r) for each ruler (for example
these parameters could be chosen to be random values). As is usual in EM-based
algorithms, the algorithm defines a sequence of parameter settings q1, q2, . . . qT ,
whereT is the number of iterations of the algorithm.

The parametersqt at thet’th iteration are calculated as follows. In a first step,
the inside-outside algorithm is used to calculateexpected counts f(r) for each rule
r in the PCFG, under the parameter valuesqt−1. Once the expected counts are
calculated, the new estimates are

qt(A→ γ) =
f(A→ γ)

∑

A→γ∈R f(A→ γ)

4.1 Calculation of the Expected Counts

The calculation of the expected countsf(r) for each ruler is the critical step: we
now describe this in more detail. First, some definitions areneeded. We defineTi
to be the set of all possible parse trees for the sentencex(i) under the CFG. We
define

p(x, t; θ)

to be the probability of sentencex paired with parse treet under the PCFG with
parametersθ (the parameter vectorθ contains a parameterq(r) for each ruler in
the CFG). For any parse treet, for any context-free ruler, we define count(t, r) to
be the number of times ruler is seen in the treet. As is usual in PCFGs, we have

p(x, t; θ) =
∏

r∈R

q(r)count(t,r)

11



Given a PCFG, and a sentencex, we can also calculate the conditional probablity

p(t|x; θ) =
p(x, t; θ)

∑

t∈Ti p(x, t; θ)

of anyt ∈ Ti.
Given these definitions, we will show that the expected countf t−1(r) for any

rule r, as calculated in thet’th iteration of the EM algorithm, is

f t−1(r) =
n
∑

i=1

∑

t∈Ti

p(t|x(i); θt−1)count(t, r)

Thus we sum over all training examples (i = 1 . . . n), and for each training exam-
ple, we sum over all parse treest ∈ Ti for that training example. For each parse tree
t, we multiply the conditional probabilityp(t|x(i); θt−1) by the count count(t, r),
which is the number of times ruler is seen in the treet.

Consider calculating the expected count of any rule on a single training exam-
ple; that is, calculating

count(r) =
∑

t∈Ti

p(t|x(i); θt−1)count(t, r) (5)

Clearly, calculating this quantity by brute force (by explicitly enumerating all trees
t ∈ Ti) is not tractable. However, the count(r) quantities can be calculated ef-
ficiently, using the inside-outside algorithm. Figure 3 shows the algorithm. The
algorithm takes as input a sentencex1 . . . xn, a CFG, and a parameterqt−1(r) for
each ruler in the grammar. In a first step theµ andZ terms are calculated using
the inside-outside algorithm. In a second step the counts are calculated based on
theµ andZ terms. For example, for any rule of the formA→ B C, we have

count(A→ B C) =
∑

i,k,j

µ(A→ B C, i, k, j)

Z
(6)

whereµ andZ are terms calculated by the inside-outside algorithm, and the sum
is over alli, k, j such that1 ≤ i ≤ k < j ≤ n.

The equivalence between the definitions in Eqs. 5 and 6 can be justified as
follows. First, note that

count(t, A→ B C) =
∑

i,k,j

[[〈A → B C, i, k, j〉 ∈ t]]

where [[〈A → B C, i, k, j〉 ∈ t]] is equal to1 if the rule production〈A →
B C, i, k, j〉 is seen in the tree,0 otherwise.

12



Hence
∑

t∈Ti

p(t|x(i); θt−1)count(t, A→ B C)

=
∑

t∈Ti

p(t|x(i); θt−1)
∑

i,k,j

[[〈A→ B C, i, k, j〉 ∈ t]]

=
∑

i,k,j

∑

t∈Ti

p(t|x(i); θt−1)[[〈A → B C, i, k, j〉 ∈ t]]

=
∑

i,k,j

µ(A→ B C, i, k, j)

Z

The final equality follows because if we define the potential functions in the inside-
outside algorithm as

ψ(A → B C, i, k, j) = qt−1(A→ B C)

ψ(A→ i) = qt−1(A→ xi)

then it can be verified that

∑

t∈Ti

p(t|x(i); θt−1)[[〈A → B C, i, k, j〉 ∈ t]] =
µ(A→ B C, i, k, j)

Z

13



Inputs: Training examplesx(i) for i = 1 . . . n, where eachx(i) is a sentence with wordsx(i)j for
j ∈ {1 . . . li} (li is the length of thei’th sentence). A CFG(N,Σ, R, S).

Initialization: Choose some initial PCFG parametersq0(r) for eachr ∈ R. (e.g., initialize the
parameters to random values.) The initial parameters must satisfy the usual constraints thatq(r) ≥ 0,
and for anyA ∈ N ,

∑

A→γ∈R q(A→ γ) = 1.

Algorithm:
For t = 1 . . . T

• For allr, setf t−1(r) = 0

• For i = 1 . . . n

– Use the algorithm in figure 3 with inputs equal to the sentencex(i), the CFG
(N,Σ, R, S), and parametersqt−1, to calculate count(r) for eachr ∈ R. Set

f t−1(r) = f t−1(r) + count(r)

for all r ∈ R.

• Re-estimate the parameters as

qt(A→ γ) =
f t−1(A→ γ)

∑

A→γ∈R f
t−1(A→ γ)

for each ruleA→ γ ∈ R.

Output: parametersqT (r) for all r ∈ R of the PCFG.

Figure 2: The EM algorithm for PCFGs.

14



Inputs: A sentencex1 . . . xn, where eachxi is a word. A CFG(N,Σ, R, S) in Chomsky normal
form. A parameterq(r) for each ruler ∈ R in the CFG.

Algorithm:

• Run the inside-outside algorithm with inputs as follows: 1)the sentencex1 . . . xn; 2) the
CFG(N,Σ, R, S); 3) potential functions

ψ(A→ B C, i, k, j) = q(A→ B C)

ψ(A→ i) = q(A→ xi)

whereq(A→ xi) is defined to be0 if the ruleA→ xi is not in the grammar

• For each rule of the formA→ B C,

count(A→ B C) =
∑

i,k,j

µ(A→ B C, i, k, j)

Z

whereµ andZ are terms calculated by the inside-outside algorithm, and the sum is over all
i, k, j such that1 ≤ i ≤ k < j ≤ n.

• For each rule of the formA→ x,

count(A→ x) =
∑

i:xi=x

µ(A, i)

Z

Outputs: a count count(r) for each ruler ∈ R.

Figure 3: Calculating expected counts using the inside-outside algorithm.

15


